
Vision and Improved Learned-Trajectory Replay

for Assistive-Feeding and Food-Plating Robots

Travers Rhodes

CMU-RI-TR-19-55

Submitted in partial fulfillment of

the requirements for the degree of

Master of Science in Robotics

The Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

July 2019

Thesis Committee:

Manuela M. Veloso, Chair

Henny Admoni

Devin Schwab

Copyright c©2019 Travers Rhodes. All rights reserved.

Abstract

Food manipulation offers an interesting frontier for robotics research because of the di-

rect application of this research to real-world problems and the challenges involved in

robust manipulation of deformable food items. In this work, we focus on the challenges

associated with robots manipulating food for assistive feeding and meal preparation.

This work focuses on how we can teach robots visual perception of the objects to manip-

ulate, create error recovery and feedback systems, and improve on kinesthetic teaching

of manipulation trajectories. This work includes several complete implementations of

food manipulation robots for feeding and food plating on several robot platforms: a

SoftBank Robotics Pepper, a Kinova MICO, a Niryo One, and a UR5.

i

ii

Acknowledgements

This work would not have been possible without the continued support and inspiration

of my advisor, Manuela Veloso, and the support of faculty members at Carnegie Mellon

University and at Instituto Superior Técnico in Lisbon, including Henny Admoni,

Oliver Kroemer, João Paulo Costeira, and Manuel Marques.

Thank you to all the members of the CORAL lab for practical and motivational

help. Thanks also to the members of Oliver Kroemer’s lab, including Sam Clarke and

Kevin Zhang, and the members of Henny Admoni’s lab, including Reuben Aronson and

Ben Newman, for putting up with me when I showed up in their labs to use their robot

arms. Thanks to the members of my Dissertation Writing Group, Pragna Mannam,

Max Sieb, Abhijat Biswas, and Suddhu Suresh. Thanks also to Ceci Morales for

assistance building my first robot from scratch. I want to especially thank Alexandre

Candeias for his intellectual, engineering, and moral support throughout the FeedBot

project.

Thank you to my family and friends for inspiring me to pursue research, including

my father, C. Harker Rhodes III, M.D., Ph.D., my uncle Ed Rhodes, Ph.D., my grand-

mothers Mae Rhodes and Janey Symington, Ph.D., and my college roommate Adrian

Veres, Ph.D.

Finally, many thanks to my wife, C. Taylor Poor, J.D., for encouraging and ap-

proving of my academic pursuits.

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and Approach . 3

1.3 Contributions . 4

1.4 Reader’s Guide to the Thesis . 5

2 Visual Perception for Food Manipulation 7

2.1 Problem Statement . 7

2.2 Object Localization on a Table . 8

2.3 Color Segmentation for Object Recognition 9

2.4 Deep-Network Object Recognition . 10

2.5 3D Object Localization using Point Clouds 13

2.6 Summary . 13

3 Vision-based Feedback Systems and Error Recovery 15

3.1 Food Acquisition . 15

3.2 Experimental Setup and Results . 19

3.3 Summary . 21

4 Robot-focused Trajectory Improvement 23

4.1 Problem Statement and Formalization 23

4.2 Parameterized Similar Path Search (PSPS) 25

4.3 Experimental Evaluation and Results 27

4.4 Summary . 32

5 Caprese Salad Case Study 33

5.1 Caprese Salad Plating . 33

5.2 Approach . 36

5.3 Results . 37

5.4 Summary . 40

v

6 Conclusion and Future Work 41

6.1 Conclusion . 41

6.2 Future Work . 42

A Customized Robotic Platform for Manipulation 45

vi

List of Figures

1.1 The author using a custom-built Niryo One feeding robot running algo-

rithms presented in this work . 2

2.1 Accounting for the height of an object when localizing the object on a

table . 8

2.2 The vision system using the UR5 wrist-mounted camera to localize food

items on the table . 9

2.3 Identification of cheese and tomato pixels using color segmentation . . . 10

2.4 Sample images of everyday objects from our object recognition experiments 12

3.1 Our Niryo One assistive-feeding robot 15

3.2 Our Kinova MICO assistive-feeding robot 16

3.3 Sample masked images of the assistive-feeding robot’s plastic spoon,

showing the spoon empty, with nuts, and with rice 17

3.4 Ablation study showing the amount of food fed as a function of the

distance the tip of the spoon has traveled for various conditions 21

4.1 Pepper learning the rice serving task 24

4.2 The feeding task trajectory input by teacher going from start, to rice

bowl (blue outline), to target bowl area (green) 27

4.3 Spoon trajectories attempted for the rice serving task using the PSPS

algorithm . 29

4.4 The arrangement of joints defining the joint space of Pepper’s left arm 30

4.5 The weight of rice transferred to the target bowl at each learning step

in the PSPS algorithm . 31

4.6 A comparison of the demonstration joint trajectories and the learned

joint trajectories . 32

5.1 UR5 robot picking up tomato slice . 34

5.2 In kinesthetic teaching, the robot is manually moved through the motion

of picking up a tomato slice . 35

5.3 The vision system using the wrist-mounted camera to localize food items

on the table . 35

vii

5.4 Comparison of Niryo One and UR5 kinematics 36

5.5 Cost of performing the recorded trajectory at various locations without

rotating the trajectory . 38

5.6 Cost of performing the recorded trajectory at various locations, allowing

the robot to rotate the trajectory . 39

A.1 The complete feeding robot setup . 46

A.2 Spoon holder with camera mount . 47

A.3 Power-breaking emergency stop for servo motors 48

A.4 Software-based emergency stop and disable button for stepper motors . 49

A.5 Network architecture . 51

A.6 Architecture of ROS nodes (in boxes) and connections to non-ROS soft-

ware interfaces . 53

viii

List of Tables

2.1 A summary of class scores for Faster R-CNN and confidence levels for

YOLO across 50 images . 11

ix

x

Chapter 1

Introduction

Food manipulation offers an interesting frontier for robotics research because of the

direct application of this research to real-world problems and the challenges involved

in robust manipulation of deformable food items. In this introduction, we explain

how robots are used for assistive feeding and meal preparation, as well what makes

it difficult for robots to manipulate food. Finally, we introduce our approach to the

problem of robots manipulating food and enumerate the contributions we have made

toward the advancement of domestic food manipulation robots.

1.1 Motivation

This work is motivated by two distinct and complementary real-world challenges that

have the potential to be solved by robots. These challenges are assistive feeding, where

a person with an upper-extremity disabilities is fed by a robot, and food plating, where

a robot transfers and arranges prepared food onto a plate.

1.1.1 Assistive-Feeding Robots

The primary real-world challenge that is addressed in this thesis is that of feeding-

assistance robots for people living with upper-extremity disabilities. In the United

States, about three in every 1000 children have cerebral palsy [1]. Since at least 1963,

when James Reswick developed the Case Research Arm Aid—Mark I, researchers have

been trying to create robots to assist in everyday activities for people living with dis-

abilities [2]. In 1987, Mike Topping began work on HANDY-1, a robot designed to

help people with cerebral palsy at mealtimes, and his product was eventually commer-

cialized [3, 4]. Compared to a caretaker, a feeding robot like HANDY-1 allows the user

to have more control over the choice of food for each bite and the pace of the meal,

allows for more consistent feeding, and makes the meal more engaging for the user [3].

There are currently a number of commercial robots available which assist in the

1

Figure 1.1: The author using a custom-built Niryo One feeding robot running algo-

rithms presented in this work

feeding task, including Bestic [5], Meal Buddy [6], Mealtime Partner [7], My Spoon [8],

and Obi [9]. For these products, a human agent (generally a caretaker) sets up the robot

so that its feeding trajectory reaches the appropriate feeding location for the user. For

example, for the Obi, the caretaker kinesthetically shows the robot the target feeding

location by holding down a button and then manually moving the spoon to the desired

feeding position. The Obi then computes a trajectory from the food to that target

location [9].

Our research aims to improve the capabilities of autonomous feeding robots to allow

a caretaker to specify the full trajectory of the robot arm rather than just the final

position. Specifying the full feeding trajectory could enable a caretaker to expand

the capabilities of the feeding robot to perform additional tasks, like combining foods

before each bite or dipping each bite in sauce before moving the food to the feeding

location. Additionally, by adding better feedback to the system, we hope to improve the

robustness of these feeding robots. Current commercial robots do not detect whether

the food is successfully acquired before bringing the spoon to the feeding location,

and the feeding location does not respond to changes in the position of the user’s

head during feeding. Our implementation on a custom-built Niryo One robot [10] is

shown in Figure 1.1 and our implementation on a Kinova MICO robot [11] is shown in

Figure 3.2.

1.1.2 Food-Plating Robots

Another real-world challenge of food manipulation that we explore in this thesis is that

of food-plating robots. While automation has long been used in food processing and

packaging, and while a range of appliances simplify the food preparation process in

homes, the less structured environment of transferring prepared food to a serving dish

is still an open research area. In particular, we are interested in using a generic food

2

manipulation tool like a fork to perform the plating task. We want to use a fork from

a research perspective because it encourages complicated manipulation strategies, and

from a practical perspective because there are benefits to a more general manipulator

to allow applicability to a wider range of tasks.

There are multiple current commercial approaches to robotic picking and placing of

food that do not require complicated manipulation strategies. Most of these approaches

use custom grippers designed for specific types of food. For food slices, the robot can

slide support surfaces underneath the food from both sides, and stabilize the slices

from above. This principle is used in the commercially available “Meat Gripper” built

by Applied Robotics [12], which can pick up and deposit sliced meats and cheeses.

An attractive gripper for food slices, in particular for tomato and cucumber slices, is

developed by Davis et al. [13]. It is based on the Bernoulli principle, and shows great

promise for food picking, similar to the success seen by suction grasping for packaged

items. However, such an end-effector could not also be used for a task like assistive

feeding.

Finally, forks have previously been used successfully by Gallenberger et al. [14] and

Herlant [15] to pick up food and bring it to a user’s mouth for autonomous feeding

tasks. In those works, a linear skewering motion (either vertical or angled) was used

to successfully pick up the food and bring it to the user’s mouth. In this thesis, we use

kinesthetic teaching on a light, easily operated input robot to define the full pickup

trajectory, and consider how best to fit a cloned trajectory to a potentially larger, more

robust robot’s arm kinematics.

1.2 Objectives and Approach

In this thesis, we consider the problem of robots manipulating food in uncontrolled do-

mestic environments and tackle challenges of perception, error recovery, and trajectory

learning.

For perception, we only provide loose constraints on the household environment

when the robot interacts with food. In the food manipulation challenges we investigate,

the robot is interacting collaboratively with a human, whether the human is presenting

food to the robot to plate, or whether the robot is presenting food to the human to

eat. We consider in the plating task, for example, that the food may be placed in a

general, not precisely defined, location when presented to the robot, so the robot needs

to be able to perceive the food and adapt to the placement of the food. In this work,

we describe the process we use to localize an object on the table, our procedure for

teaching robots to detect the pixel location of an object, our proposal for using “proxy

classes” to quickly train a deep-network object detector to detect new objects, and our

use of an RGB-D camera for object localization when the object is not on a table.

There is intrinsic variability in the physical properties between particular instances

3

of food. Some grains of rice may stick more closely together than others. Some tomato

slices may be more or less ripe or have different internal structures which may affect

physics properties and may be difficult for the robot to detect before interacting with

the tomato slice. While it seems likely that one could improve the perception of the

robot to better detect and predict the physics properties of the food that the robot is

manipulating, we nevertheless believe it is impossible to do so perfectly, so in our work

we include feedback systems and autonomous error-recovery in the robot behaviors. We

build a feeding robot and then show how our use of a spoon-facing camera to provide

feedback on the amount of food acquired by the robot improves the performance of the

feeding robot.

We commit to teaching our robots plating and feeding skills by learning from demon-

stration and by replaying trained trajectories. In our Niryo One and Kinova MICO

feeding robots, we consider the case where a demonstration trajectory is presented as

a visual recording of the poses of a fork used by a human. In our Pepper rice serv-

ing robot, we consider the case where a demonstration trajectory is kinesthetically

trained on the robot by a human physically moving the joints of that robot through

the desired motions. Finally, in our caprese salad plating robot, we consider the case

where a demonstration trajectory is trained kinesthetically on one robot (a Niryo One

robot), and then the resulting trajectory is transferred to different type of robot with

a different kinematic layout (a UR5 robot). Though the robot can succeed by copying

human-demonstrated trajectories, we allow the robot to modify and improve learned

trajectories to work more efficiently on the particular kinematic structure of the robot’s

arm. For the Pepper robot, the learning is supervised by human feedback on task suc-

cess after the robot performs the action. For the UR5, the learning is automated

to detect and prevent collisions or motions outside the workspace and performed in

simulation.

1.3 Contributions

This thesis makes the following contributions to the field of artificial intelligence for

robots:

• We propose the use of “proxy classes” to teach robots novel objects in household

scenes

• We show that an assistive-feeding robot’s use of visual feedback improves its

efficiency in performing food acquisition

• We introduce the Parameterized Similar Path Search (PSPS) algorithm, through

which a robot can improve on a trajectory taught using kinesthetic teaching

4

• We show how a robot can take advantage of task symmetries by rotating a

recorded trajectory to accommodate its kinematics

• We present implementations of feeding and plating algorithms on real Pepper,

Niryo One, Kinova MICO, and UR5 robots

1.4 Reader’s Guide to the Thesis

The rest of this work proceeds as follows. Chapter 2 discusses how we teach robots

visual perception skills for food manipulation. Chapter 3 discusses our feeding robot

and shows the efficiency of error recovery and feedback systems on that robot. Chapter

4 discusses kinesthetic teaching of food manipulation motions and introduces the PSPS

algorithm to improve those learned motions. Chapter 5 discusses our caprese salad

plating robot and shows how it can modify trained trajectories to expand its workspace.

Chapter 6 concludes this work and presents suggestions for future work.

5

6

Chapter 2

Visual Perception for Food

Manipulation

We teach our robots to sense their surroundings and understand where relevant objects

are located so that they can succeed in unconstrained household environments. In this

chapter, we present the vision-based approaches our robots use to identify and localize

objects. First, we describe the process we use to localize some object on the table,

given that we know its pixel coordinates in a camera image. Then, we explain our

procedure for teaching robots to detect the pixel location of an object in an image

using color segmentation, which approach we use in our caprese salad plating robot

presented in Chapter 5. We also present our proposal for using “proxy classes” to

quickly train a deep-network object detector to detect new objects [16]. Finally, we

discuss the use of an RGB-D camera for object localization when the object is not

known to be constrained to lie on a table, which we use to locate the mouth of a user

when feeding them [17].

2.1 Problem Statement

In general, we consider our food manipulation environment to be “unstructured” be-

cause we do not require the food to be placed in a very specific position in order for

the robot to interact with it. There is a qualitative difference between a food pro-

cessing machine into which one inserts food, and the more generic food manipulation

robot that is itself able to find and pick up food presented to it, or is itself able to

detect where the food should be fed. One might imagine a mobile robot with a large

workspace collecting food to manipulate and prepare, though in this work we assume

that the food presented to the robot is placed somewhere in a predefined polygonal

region on a table in front of the robot. This provides for the robot’s vision system the

constraint that the food is located somewhere on the plane of the table. With that

assumption, we can use a single RGB camera mounted in a known position somewhere

7

on the kinematic chain of the robot manipulator, or fixed in the world frame, to detect

and localize the food for manipulation.

2.2 Object Localization on a Table

If an object is detected in a camera image, and it is known that the object is resting

on a known table plane, the process we use to localize the object in three dimensions

is as follows. First, we use the image geometry ROS package to parse the camera’s

intrinsic parameters according to a pinhole camera model and to convert from a pixel

location in the camera image to a ray in the camera frame. For this work, we assume

we know the relative location of the table plane to the robot camera. Thus, we can

use the robot state publisher and tf ROS packages to convert camera pixel ray to

be in the same frame as the table plane. We intersect the camera pixel ray with the

table ray to get the object location in three dimensions.

object

table

camera

table offset

camera ray

x

z

(a) Projection diagram (b) Algorithm running on Pepper so

it can grab a tennis ball

Figure 2.1: To account for the height of an object when localizing the object on a table,

the camera ray should be intersected with the table offset plane (not the table plane)

in order to compute the correct x location of the object center

If the detected object center has a known height above the table, the procedure can

be adjusted for this height. For example, in order to have the Pepper robot pick up a

tennis ball from a table, we noted that the center of the tennis ball was roughly 3cm

above the table. Thus, we intersected the camera pixel ray with a plane 3cm above

the table in order to locate the center of the tennis ball. If the camera is not directly

above the object, this adjustment corrects the x, y locations of the object as well as its

z location. Without this adjustment, the robot will project the object center onto a

point on the table behind the object (Figure 2.1).

8

(a) UR5 wrist camera image (b) Region of interest

Figure 2.2: The vision system using the UR5 wrist-mounted camera to localize food

items on the table

Additionally, in order to prevent the camera from fixating on objects in the back-

ground scene, if the robot is given a programmed polygon on the table where food will

be presented to it, we can focus the robot on the relevant region as follows. First, we

back-project the polygonal region of interest on the table into the camera frame, using

the image geometry package. Next, we create a binary image mask to only include

the relevant polygonal region using OpenCV’s fillConvexPoly function [18]. Finally,

we apply that mask during the image processing procedure to prevent the detection of

objects located in the background. Figure 2.2 gives an example of this mask. It shows

the region of interest computed based on a pre-defined rectangle of interest inside the

blue cutting board on the table.

2.3 Color Segmentation for Object Recognition

We now address the problem of identifying discrete food object pixels in an RGB

camera image. If the food objects have a known color distribution that doesn’t overlap

with the color distribution of the table, as is the case when making a caprese salad on

a blue cutting board, we can use color segmentation to localize the tomato and cheese

pixels in the image.

For ease of teaching the robot to identify the objects, the user can provide separate

reduced (4x4 pixel or 16x16 pixel) PNG images containing pixel samples from the

different food items and from the background. Providing these images is the way the

programmer teaches the robot what color the objects to detect are. We then use a

nearest neighbors approach using Euclidean distance in the RGB space to label each

pixel with whichever image (food item or background) it matches most closely in color.

For each food item, this gives us a binary mask of that food item’s pixels. We use

an erosion and dilation procedure to clean these binary pixel identifications, and we

group connected components in order to identify separate instances of our food items

on the table. In general, we pick the center point of the largest connected component

9

(a) Wrist camera image (b) Cheese pixels (c) Tomato pixels

Figure 2.3: Cheese and tomato pixels are identified within the masked region of interest

based on taught color samples of cheese, tomato, and background. Since we then

segment connected components and choose the largest component, the small noise

components in the tomato identification are not a concern

for a given class of food as the target point for that class of food. This process is

displayed in Figure 2.3. The robot is trained to differentiate tomatoes and cheese from

the background color by being given color samples from cheese, tomatoes, and the

background cutting board.

2.4 Deep-Network Object Recognition

While color segmentation can work for simple cases, more advanced techniques give

more flexibility, allowing for identification based on the shape of an object, or its

texture. Deep networks show great promise in the field of object recognition, but have

one downside in that they require many samples. By contrast, you only need a single,

exceptionally low-resolution PNG for each object and the background in order to train

the color segmentation detector.

We investigate the possibility of taking a network that is pre-trained on some cat-

egories and then applying that network to novel objects. For example, we analyze the

performance of YOLO and Faster R-CNN networks trained on the COCO dataset and

apply those networks to detect objects that do and do not map intuitively to categories

in the COCO label set, to simulate real-world scenarios where the robot is asked to

identify classes of objects on which it has not been trained [19, 20, 21]. We propose

a learning algorithm where the robot associates novel objects with the class label(s)

they most resemble.

To empirically measure whether the networks are effective in distinguishing a variety

of arbitrary, everyday objects, we instruct the robot to take images of seven objects in

50 different configurations (examples in Figure 2.4), and we hand-label the center point

of each object in each image. Table 2.1 presents the first, second, and third quartiles of

the confidence scores for the four classes with the highest median confidence for each

10

Table 2.1: A summary of class scores for Faster R-CNN and confidence levels for YOLO

across 50 images

Faster R-CNN YOLO

Q1 Q2 Q3 Q1 Q2 Q3

Mug

cup 99.86 99.91 99.96 cup 88.53 90.65 91.97

refrigerator 2.45 5.22 8.83 sink 0.09 0.29 1.22

bottle 0.87 2.40 4.79 bed 0.10 0.29 0.54

vase 0.00 0.81 1.58 laptop 0.09 0.21 0.39

Can

bottle 76.49 85.17 90.01 bottle 24.29 40.71 61.73

cup 13.36 33.31 44.99 cup 1.04 3.69 16.03

refrigerator 1.73 4.42 8.60 bed 0.06 0.20 0.41

vase 0.67 1.78 3.41 sink 0.08 0.17 1.22

Tennis ball

sports ball 69.71 85.90 94.79 sports ball 3.57 27.84 64.23

apple 7.42 15.05 33.26 apple 3.78 15.17 38.29

refrigerator 1.73 4.42 8.46 orange 3.55 10.51 20.95

orange 0.13 1.11 2.04 bed 0.07 0.20 0.41

Block

refrigerator 1.93 3.84 8.46 cell phone 0.42 1.35 3.54

cell phone 0.00 2.09 10.10 book 0.23 0.82 2.35

book 0.70 1.40 3.33 remote 0.09 0.26 0.85

tie 0.13 1.02 2.23 knife 0.08 0.23 0.82

Golf ball

sports ball 36.04 50.65 60.14 sports ball 13.52 27.39 50.61

mouse 6.61 10.89 15.95 mouse 2.98 12.72 25.91

apple 7.26 9.32 13.11 apple 0.30 1.44 5.92

refrigerator 3.04 5.82 8.90 orange 0.11 0.47 1.14

Red ball

apple 50.99 60.11 72.49 apple 30.29 44.43 57.34

sports ball 6.95 11.44 16.31 orange 14.06 25.13 43.51

mouse 4.17 6.15 12.64 sports ball 0.57 2.10 8.00

refrigerator 1.73 4.42 8.46 mouse 0.24 0.51 1.18

Marker

bottle 76.74 86.95 91.60 bottle 17.71 29.44 45.89

toothbrush 11.03 20.92 46.98 toothbrush 7.75 20.68 36.86

refrigerator 2.83 5.46 8.83 remote 0.29 1.15 2.77

cup 0.68 1.71 3.24 spoon 0.20 0.55 1.35

11

Figure 2.4: Sample images of everyday objects from our object recognition experiments

object.1

We first consider the objects which intuitively belong to a COCO class (i.e., mug:

“cup,” tennis ball: “sports ball,” golf ball: “sports ball”). For those objects, we find

that the median assigned confidence is highest for the matching class labels, for both

YOLO and Faster R-CNN.

We next consider objects like can, red ball, and marker, which do not have an intu-

itive label in the COCO set.2 We find that the robot nevertheless consistently assigns

certain classes to those objects regardless of orientation. We call those classes “proxy

classes.” We define a proxy class for an object to be a class label that is consistently

triggered more strongly by that object than by other objects in the environment. For

example, Table 2.1 shows that the “toothbrush” class (the second most strongly trig-

gered class by whiteboard markers) is a proxy class for markers. The robot is able to

identify markers as the only objects in our images that “look like” toothbrushes. Of

course, if the environment also contains an actual toothbrush, or some other object

that “looks like” a toothbrush, then the “toothbrush” class would not be sufficient to

distinguish markers from that other object.

In cases where a single proxy class is not sufficient, combinations of classes can be

used to differentiate objects. We propose an algorithm in which the robot searches for

objects that “look like” a specific combination of target classes. For example, the robot

might be shown a can and learn that the neural networks classify the “can” object as

a combination of “bottle” and “cup” classes. It could then search for objects that

look like both a “bottle” and a “cup” and thereby be able to identify cans and also to

distinguish them from bottles and cups.

We propose that by combining information across classes in this manner, any of

our everyday objects can be differentiated from the others. We believe that algorithms

1The “dining table” class is removed from Table 2.1 since both neural nets assign that class a large

bounding box around all the objects (correctly identifying that these objects are resting on a table).
2The 80 COCO class labels can be found at http://cocodataset.org.

12

http://cocodataset.org

of this type will be useful in the scenario where a robot is asked to interact with a

novel generic object class on which it has not previously been trained. In this way, a

food manipulation robot could modify a pre-trained deep-network object recognition

algorithm to detect novel food items, even if it has not been previously trained on that

precise food category.

2.5 3D Object Localization using Point Clouds

If the object is not located on a known plane, then more information than a pixel loca-

tion is needed in order to localize the object. This occurs, for instance, when localizing

the mouth point to which food should be brought when feeding a person. For this type

of localization, one approach we found effective was Discriminative Optimization, a 3D

point-cloud registration algorithm.

With Discriminative Optimization, a model of the point cloud that should be iden-

tified is stored. In the case of feeding a person, a model of the person’s head is recorded

as a 3D point cloud. This model is then processed so that for any new point cloud

presented to the algorithm, an approximate gradient can quickly be computed that

rotates and translates the new point cloud to more closely align with the model point

cloud. This approximate gradient descent is repeated a fixed number of times to give

an approximate alignment of the new point cloud to the model point cloud.

In the case of identifying a feeding point location for a feeding robot, if the mouth

point of the person is known relative to the model point cloud, then the Discriminative

Optimization algorithm (or a similar point-cloud-matching algorithm, like Iterative

Closest Point) can be used to identify the 3D location of the head model in the world-

frame, and the mouth point is then a known location in the head model frame.

As long as the transformation from the RGB-D camera to the base of the robot is

known, this procedure can be used to localize the mouth of the person being fed in

the robot’s frame of reference. Thus, as long as the camera is properly calibrated, the

camera that is tracking the mouth of the user does not need to be physically attached

to the robot, but could be placed in any convenient place away from the robot facing

the user. Since most RGB-D cameras have a minimal sensory range, it might not be

beneficial to put an RGB-D camera on the wrist of the robot, since during feeding the

wrist of the robot is likely to get closer to the user’s face than the minimal sensing

range of the depth camera.

2.6 Summary

In this chapter, we presented vision-based approaches we implemented on our robots

in order to perceive and localize objects in their environment. We explained how our

robots can localize objects on a plane, how we teach our robots to identify objects using

13

color segmentation, and our proposed “proxy classes” so that the robot can quickly

identify new objects using a deep-learning framework. Finally, we explained our use of

Discriminative Optimization for 3D point-cloud registration to localize objects not on

a table.

14

Chapter 3

Vision-based Feedback Systems and

Error Recovery

This chapter introduces our feeding robot and presents the work we did using visual

feedback and error-recovery behaviors to improve its efficiency [17]. We show how a

spoon-facing camera can detect the amount of food on the spoon the robot is holding,

and how the robot can use this information to modify its behavior to bring food more

efficiently to the user’s mouth. This work explains our implementation and experiments

on a real Kinova MICO robot. We also applied these same algorithms to smaller Niryo

One arms (Figure 3.1), and one of those robots is now in regular use assisting one of

our collaborators with cerebral palsy and will be used in their lab for future studies.

3.1 Food Acquisition

We propose a real-time system that uses depth images to track the user’s mouth in 3D

space and a separate vision system to provide useful feedback for how much food the

Figure 3.1: Our Niryo One assistive-feeding robot

15

(a) Preparing (b) Scooping (c) Carrying (d) Eating

Figure 3.2: Our assistive-feeding robot includes a MICO robot arm, an RGB-D camera,

and an RGB camera. Figure (a) also labels the axis orientations of the robot coordinate

system. A video of our robot is available at https://youtu.be/X7McqWk1AK8

robot acquired on its spoon. Real experiments show that the visual feedback module

significantly improves the feeding system’s performance.

3.1.1 Feeding System

For this work, we consider a feeding system composed of two parts: 1) a vision system

that is responsible for detecting if there is food on the spoon and the location of

the user’s mouth and 2) a control system that is responsible for transforming visual

perceptions into tasks executed by the robot arm.

3.1.2 Vision System

To see what is on the spoon, we place a tiny RGB camera on the end-effector of the

robot arm. After a simple calibration step of holding a light-colored background behind

the spoon, we compute a mask for the image that only contains the spoon. We can

use this masked image for two purposes, to detect if there is enough food to serve the

user, and to detect if the user has eaten the food off the spoon. To detect if there is

enough food on the spoon we use a detection algorithm that we can tune to specify the

required amount of food. To detect if the user has eaten the food, we use a classifier

with two classes: “food” and “no food.”

To tune our food-detection threshold, we gathered a dataset containing 387 data

points of masked images of the spoon and the corresponding weight of food present on

the spoon. Examples are shown in Figure 3.3. We use peanuts and fried rice as our

test foods. We use the histogram of colors present in the spoon image to inform the

choice of the threshold for “enough food” on the spoon.

16

https://youtu.be/X7McqWk1AK8

(a) Empty spoon (b) Peanuts (c) Fried rice

Figure 3.3: Sample masked images of the assistive-feeding robot’s plastic spoon, show-

ing the spoon empty, with nuts, and with rice

The robot uses an RGB-D camera to detect the location of the user’s mouth.

First, we train a model of the user’s head, and then the robot uses Discriminative

Optimization to perform 3D point-cloud registration to detect the user’s head in the

scene, as explained in Section 2.5. The mouth point is assumed to be in a static location

on the head model.

3.1.3 Control System

Gradient-based planning

The goal of our planning algorithm is to move the tip of the spoon from its current

location to the user’s mouth. Because the mouth of the user may be moving, we need

our planning algorithm to be able to quickly re-compute its plan based on updated

mouth-target positions. For this reason, we choose a planning algorithm that iteratively

moves the tip of the spoon one step in a straight line toward the current location of

the mouth. We also want to ensure that the spoon does not dump its contents during

transit, so we control the orientation of the spoon during transit.

A flexible approach to allow quick re-planning and to constrain orientation is a

gradient-based approach. At each timestep, we compute an intermediate Cartesian

end-effector target that is a certain distance, parameterized by a parameter “trans-

lationStepSize,” from the current location. The intermediate Cartesian target is the

mouth location itself if the mouth location is within “translationStepSize.”

We similarly compute an intermediate orientation target by computing the rotation

necessary to convert from the current orientation of the end-effector to the target

orientation. We define the target orientation to lie along the y-axis direction shown in

Figure 3.2. We set our intermediate orientation target to be the orientation that is at

most a certain angle rotation, parameterized by a parameter “rotationStepSize,” away

from the current orientation. During transit from the plate to the user’s mouth, the

orientation is never more than a very small angle away from the desired final feeding

orientation, so the target orientation is always the desired final orientation.

We use OpenRave [22] to compute the Cartesian Jacobian, which is a 3×DOF ma-

17

trix showing how changes in each joint angle locally move the end-effector in Cartesian

space. We also use OpenRave to compute the angular velocity Jacobian, which is a

3×DOF matrix showing how changes in each joint angle locally rotate the end-effector,

where rotations are given in angle-axis representation.

We write our desired translation as a length 3 vector. We concatenate that vector

with the angle-axis representation of our desired rotation to give us a length 6 vector

representing our desired change in end-effector pose. Our “translationStepSize” and

“rotationStepSize” parameters guarantee that our intermediate target pose is “close” to

our current pose, so we can reasonably linearize our problem to be Equation 3.1, where

Jc and Jr are the Cartesian and rotation Jacobian defined above, Θ is the change in the

joint angles we are calculating, and ∆c and ∆r are the desired translation and rotation

to move the end-effector to the intermediate target. In our experiments, we use a 6DOF

robot, so we can use ordinary least-squares regression to compute the required joint

changes necessary to satisfy that equation. For a robot with more degrees of freedom,

regularization could be used to prefer solutions with small joint angle changes.[
Jc
Jr

]
Θ =

[
∆c

∆r

]
(3.1)

We find that this simple architecture works for the majority of our feeding tests.

Since this gradient-based algorithm is greedy, we do note that it is possible for the

robot arm to follow trajectories into local minima where joint constraints prevent the

robot arm from continuing all the way to the user’s mouth. In our setup, we find that

this generally happens if the trajectory brings the robot end-effector too close to the

robot base. Placing the user and plate so that the path between them stays more than

a certain distance from the robot base circumvents this issue and leads to successful

trajectories, though we also implement a more robust solution that modifies planned

trajectories to keep away from the robot base while moving.

Learning from Demonstration

In addition to defining trajectories from the plate to the mouth and back, we also

need to train the robot to acquire food from the plate. To do so, we use learning

from demonstration to imitate human utensil trajectories. In this manner, we do

not need to perform the complex task of modeling different food types in order to

plan food acquisition strategies. The ability of learning from demonstration to plan

trajectories without an explicit model of the environment dynamics [23] is an attractive

benefit for us in this context. “Learning from demonstration” in the robotics context

usually means some mechanism of automatically acquiring knowledge from human

demonstration, but for this work it was sufficient to pick and imitate a single trajectory

from a collection of trajectories for assistive feeding. In [24], Bhattacharjee et al.

collected detailed fork trajectories in a simulated assistive feeding environment. We

18

visualize several of those trajectories in Rviz and select and truncate a single fork

trajectory that follows a simple scooping motion in acquiring coleslaw. Our robot

imitates that single fork trajectory to acquire food with a spoon. We find that single

scooping trajectory to be sufficient for scooping up the different food types we tested,

but we expect that there are food types and serving plate configurations for which a

more customized trajectory is required.

To have our robot spoon replicate the training trajectories, we want the robot to

move its arm in such a way that the tip of the spoon follows the demonstrated tip of

the fork in both position and orientation. In addition, we want the robot to be able

to translate the demonstration trajectory target by various offsets so that the robot

can scoop food from different parts of the serving plate. To accomplish this, we use

the same gradient-based planner described above, where now the target position and

orientation of our gradient-based controller are generated by playing back the recorded

utensil tip poses, offset by the desired translation. We slow down the played-back

demonstration to one fifth of the demonstration speed due to speed constraints of the

robot arm and to ensure safety.

3.2 Experimental Setup and Results

3.2.1 Hardware Setup

To test our food acquisition feedback algorithm on an actual robot, we use a 6DOF

Kinova MICO robot affixed rigidly to a dining table. We place a serving bowl of food

in front of the robot and have the robot hold a spoon in its end-effector. We attach

an iDS-xs RGB camera to the end-effector pointed toward the bowl of the spoon. The

camera publishes a ROS topic which is used for food acquisition feedback.

3.2.2 Ablation Study for Food Acquisition

Setup

To analyze the importance of various components of the food acquisition system, we

perform an ablation study in the feeding task where we measure the efficiency of

the feeding robot when it does and does not use certain feedback and error recovery

strategies. We define the efficiency to be the mass of food that is delivered to the feeding

location as a function of the total distance that the tip of the spoon has traveled. We

report the mass as a function of distance traveled rather than the time taken because

we want to negate any effect that setting the robot to a faster or slower speed would

have on the results.

The feedback and error recovery strategies that we alter in our ablation study are 1)

whether or not the robot re-scoops if the spoon-facing camera detects that not enough

19

food was acquired and 2) whether the robot always scoops from the same position on

the serving plate or whether it scoops from a uniformly random position within a 6cm

x 3cm rectangle on the plate. We perform the ablation experiment on two different

kinds of food: peanuts and fried rice. In this way, we can determine if the importance

of system components depends on the type of food.

For consistency in results, we use the same random seed for all trials that randomize

the scooping location on the plate. To speed up data collection, the robot dumps the

food directly onto the scale after food acquisition. Then, in our data analysis we add

in the distance to the user’s mouth and back. Cutting out the travel time between

the plate and the user’s mouth cuts the data acquisition time by a factor of three. On

average, the distance traveled by the spoon tip in a single scooping motion is 32cm

and the average distance to and from the user’s mouth is 49cm in each direction. We

use these average distance values when representing the amount of food served as a

function of distance.

Results

In our ablation study for food acquisition, we find that vision feedback significantly

increases the amount of food brought to the user in each bite. For rice, when random-

izing the scooping location, the average amount of rice served per bite in the first 20

bites across three trials is 4.8g with camera feedback and 3.2g without camera feed-

back (paired t-test p-value 9e-6). Likewise for nuts it is 3.8g with camera feedback

and 2.7g without (paired t-test p-value 1e-5). There is an added distance that the

end-effector travels in re-scooping when using camera feedback. Despite this added

cost in distance, Figure 3.4 shows that even when looking at the amount of food served

as a function of the total distance that the spoon tip travels (including the added dis-

tance required to re-scoop), after 25 meters, random scooping with camera feedback

consistently outperforms random scooping without camera feedback.

For both rice and nuts we find that randomization of the scooping location is a

useful technique in food acquisition. Figure 3.4 also shows that randomization coupled

with visual feedback on the success of a scoop is the most effective. Most interestingly,

we find that the importance of our system components depends on the type of food

used. We find that randomizing the location of scoops is more important when serving

rice instead of nuts. This could be related to the fact that nuts were observed to

“settle” after each scoop, whereas fried rice will tend not to fill in the hole left after

scooping. Thus, scooping the same place for fried rice will quickly result in very little

(almost no) mass acquired by the spoon in subsequent scoops.

20

(a) Feeding nuts (b) Feeding rice

Figure 3.4: Charts showing the amount of food fed (in grams) as a function of the

distance the tip of the spoon has traveled, including the distance traveled in re-scooping.

The chart includes results for scooping location randomization (solid lines) compared

to a constant scooping location (dotted lines), and it includes results with (green lines)

and without (red lines) camera feedback on whether food was successfully acquired.

We ran three trials for each test type

3.3 Summary

In this chapter we presented our assistive-feeding robots, which include a Kinova MICO

robot and a Niryo One robot, and explained the implementation of our feeding algo-

rithm in detail. We also showed how a feedback system to detect the presence of

food on the spoon of the robot improves the efficiency of the assistive-feeding robot.

We performed our feedback efficacy experiments on a real Kinova MICO robot, and

implemented our feeding algorithm on both a Kinova MICO robot and a Niryo One

robot.

21

22

Chapter 4

Robot-focused Trajectory

Improvement

Our research aims to improve the capabilities of autonomous feeding robots to allow

a caretaker to specify the full trajectory of the robot arm rather than just the final

position. Specifying the full feeding trajectory could also enable a caretaker to expand

the capabilities of the feeding robot to perform additional tasks, like combining foods

before each bite or dipping each bite in sauce before moving the food to the feeding

location. We commit to achieving this by using learning from demonstration, in partic-

ular kinesthetic teaching, where a teacher physically moves a robot through a desired

trajectory. In this chapter we present our work on a robot using trial and error and

feedback from a human teacher to improve on a kinesthetically trained trajectory [25].

We introduce the Parameterized Similar Path Search (PSPS) algorithm and show how

the robot can use PSPS to improve the trained trajectory over its own cost function

while still completing the desired task. This work was implemented on a real Pepper

robot.

4.1 Problem Statement and Formalization

We address the problem of how an assistive robot can improve on a trajectory learned

through kinesthetic teaching. The robot is kinesthetically trained on some task, as in

Fig. 4.1a, and our problem is to construct a learning algorithm whereby the robot can

improve on that task, as in Fig. 4.1b.

For an assistive feeding robot with m degrees of freedom, let J be the set of valid

static configurations J = {(j1, j2, . . . , jm) ∈ Rm} where ji is the parameterization of

the ith degree of freedom. For example, if the ith degree of freedom corresponds to a

revolute joint, then ji would measure the angle of that joint. We consider a trajectory to

be a set of pairs of joint states and times {(j1, t1), . . . , (jk, tk)}, with ji ∈ J , ti ∈ R, and

ti < ti+1. We call the set of all trajectories Φ. Since our robot is trained kinesthetically,

23

(a) Pepper learning from

kinesthetic training

(b) Pepper improving learned

trajectory using PSPS

Figure 4.1: Images of the Pepper robot learning the rice serving task presented in

Section 4.3. A video of these experiments can be found at https://youtu.be/

jMyzH8Yu2mM

the training demonstration is an element of the set Φ.

We assume there exists some cost function C : Φ → R, known to the robot, that

gives a measure of the cost of any trajectory. This cost function could be any cost,

like the total path length, the smoothness of the path, or the energy needed to achieve

that trajectory.

We assume that the teacher knows some task-success-evaluation function S : Φ→
{0, 1}, unknown to the robot, that tells whether a trajectory satisfactorily completes

the task, in which case S returns 1, or not, in which case S returns 0. The task-success-

evaluation function is evaluated by the teacher, and the teacher decides whether the

robot’s attempt to complete the task was successful. For example, if the task is to scoop

up a dumpling, dip it in sauce, and move it to the feeding location, then the success

function only will return true if the robot accomplishes all those tasks to the satisfaction

of the teacher. The robot is able to ask the teacher to evaluate the success function

S(φ) for any trajectory φ. While we allow the robot to ask the teacher to evaluate

any trajectory, that trajectory evaluation does involve the robot actually executing the

trajectory. Since novel exploratory trajectories can be dangerous to execute on a real

robot, in our work the robot gradually changes and improves its trajectory around a

known viable trajectory rather than searching across the whole space of trajectories.

24

https://youtu.be/jMyzH8Yu2mM
https://youtu.be/jMyzH8Yu2mM

Each time the robot asks the teacher to evaluate the success function is a learning

step. Pursuant to [26], we consider enhancing this learning problem by having the

teacher also provide an estimate of the time(s) when the robot trajectory failed the task.

Though our experiments find satisfactory results without including that component,

we consider further research in that area to be a possible avenue of future work.

We define our problem as follows: The robot is shown a single successful trajectory

φd ∈ Φ. The robot asks the teacher to evaluate the success of N different trajectories.

The robot’s learning problem is to find, after these learning steps, a learned trajectory

φl for which S(φl) = 1 and which makes C(φd)− C(φl) as large as possible.

We note that this formalization can be extended naturally to handle a stochastic

success function Ss, where Ss(φ) returns 1 with probability p(φ) and 0 with probability

1 − p(φ), by having the robot attempt to maximize E[Ss(φl)(C(φd) − C(φl))]. This

maximization can be empirically estimated by evaluating Ss(φl) multiple times.

4.2 Parameterized Similar Path Search (PSPS)

The PSPS algorithm is based on the assumption that similar trajectories are likely

to have similar success values. Thus, we want the algorithm to focus its search on

trajectories that are similar to the training trajectory. We also note that, because

exploratory trajectories on a real robot can be dangerous, having the learning algorithm

focus on trajectories similar to the kinesthetically trained trajectory is also relevant

from a safety perspective.

We therefore define the PSPS algorithm as follows. First, the robot defines a

function d : Φ → R ≥ 0 that measures how different a new trajectory is from the

training trajectory.1 Second, the robot picks some distance parameter δcur ∈ R and

searches over the set of trajectories {φ | d(φ) < δcur} for the trajectory in that set that

minimizes the cost C(φ). The robot then performs a learning step and asks the teacher

if that trajectory is successful. If the trajectory is successful, the robot increases δcur
and repeats. If the trajectory is not successful, the robot decreases δcur and repeats.

If the robot is given information about particular parts of the trajectory that led

to failure, the robot may also update the distance function d to make the trajectory

more closely align to the training trajectory for those failing timesteps.

1 For linguistic convenience, we call d a “distance” function in this paper. However, since d only

defines a notion of distance from the training trajectory, d does not satisfy the mathematical definition

of a metric.

25

Algorithm 1 Parameterized Similar Path Search Algorithm

1: Initialize φcurrent best to the trained trajectory

2: Initialize δmin ← 0

3: Initialize δcur to some arbitrary value

4: Initialize isDeltaMaxKnown ← False

5: iteration ← 0

6: while iteration < N do

7: if isDeltaMaxKnown then

8: δcur ← (δmin + δmax)/2

9: else

10: δcur ← δcur ∗ 2

11: end if

12: Define similar trajectories Φδ = {φ | d(φ) < δcur}
13: φtest ← arg minφ∈Φδ

C(φ)

14: Ask teacher to evaluate success ← S(φtest)

15: if success then

16: φcurrent best ← φtest
17: δmin ← δcur
18: else

19: δmax ← δcur
20: isDeltaMaxKnown ← True

21: end if

22: if The robot receives additional feedback then

23: The robot updates d based on that feedback

24: end if

25: end while

26: return φcurrent best

This active learning algorithm focuses the robot’s search on trajectories that are

likely to improve the cost function C. We expect this algorithm to be robust to the

choice of the initial δcur, as it performs an exponential search in the δ parameter. We

note that increasing the δ will always lead to an equal or lower-cost trajectory, but

may lead to trajectories that do not accomplish the desired task. For safety reasons,

to avoid the robot executing dangerous trajectories, we suggest that δcur be initialized

to a small value and that the feasibility of the initial δcur be tested in simulation before

this algorithm is run on a new robot.

26

4.3 Experimental Evaluation and Results

We run experiments to better understand the feasibility of this algorithm and its real-

world performance. We are interested in evaluating how much this algorithm is able

to optimize sample learned trajectories and whether it is necessary for the teacher to

provide information on the time of trajectory failure (lines 22-23 in Algorithm 1) to

make the PSPS algorithm effective.

We ran the PSPS algorithm in both the 2D simulated feeding world and on a real

robot serving rice.

4.3.1 2D Rice Serving Task Simulation Setup

We first test this algorithm in simulation in a low-dimensional environment so it is

easier to visualize its behavior. We consider a two-dimensional world where the robot

state J is the x, y coordinates of a spoon. Inspired by our feeding problem, the task

constraints are to generate a trajectory that passes from the start location to inside

the rice outlined in blue in the bowl on the right (to pick up the food) and then to

the green area in the bowl on the left (to deposit the food) without hitting the table

or sides of the bowls. The locations of the bowls and table in this simulation, along

with the training trajectory curve demonstrated by human input through a mouse, are

displayed in Fig. 4.2.

Figure 4.2: The feeding task trajectory input by teacher going from start, to rice bowl

(blue outline), to target bowl area (green)

In this simulation, we set the goal to minimize the roughness (sum of squared second

derivative) of the trajectory, while ensuring that the square root of the weighted average

square distance between the new path and the old path over all timestamps is less than

the constraint distance. This choice of smoothness function combined with the distance

27

function is known [27] to be solved by natural cubic splines, and we are able to use the

MATLAB spaps function [28] at each step of the PSPS algorithm to optimize the cost

function given the constraint.

In this simulation, the mechanics of the PSPS algorithm interaction between teacher

and simulated robot is as follows. The simulated robot performs the learning optimiza-

tion step of the PSPS algorithm by computing a similar spline trajectory to the training

trajectory within some constraint distance δ. Then, the simulated robot draws that

new trajectory on the screen for the evaluation of the teacher. The teacher inspects that

trajectory and reports back whether the trajectory meets the teacher’s task constraints

or not.

4.3.2 2D Serving Task Simulation Results

The constraint is that the sum of square Euclidean distances between training and

tested paths must be no more than δ2 ∗ n where n is 544, the number of points in the

trajectory. The map giving the layout of the table and bowls is 500x800 pixels, and we

begin with δ = 5 pixels. We constrain the spoon trajectory to match the start and end

locations closely by multiplying the start- and end-point square errors by 100 before

including those errors in the constraint sum.

Fig. 4.3 shows the result of running PSPS in the 2D serving simulation. The training

trajectory (here trained by drawing with a mouse on the image) is shown as a dotted

black line. The simulated robot spoon first tries a similar trajectory using PSPS and

δ = 5 pixels. Since that trajectory gets marked as successful by the teacher, we plot

it in green in Fig. 4.3. Since that trajectory was successful, the learning agent then

increases δ and iterates, following PSPS. We plot the tested trajectories in Fig. 4.3,

with green showing successful trajectories and red showing failures. After six learning

iterations, the best trajectory is plotted in blue.

From this experiment we observe that this algorithm can indeed optimize over the

training trajectory while satisfying the trajectory constraints without the additional

necessity of adding waypoint constraints along the path of the trajectory. For this ex-

ample case, we find that it is not critical for the PSPS algorithm to receive information

about the timing of failures in order to nevertheless find an improved trajectory over

the training trajectory.

4.3.3 Pepper Robot Rice Serving Task Setup

We also explore the usefulness of this algorithm on a real robot for a realistic plating

task. We use the Pepper robot from SoftBank Robotics and attach a spoon to its left

hand. The joint configuration of Pepper is shown in Fig. 4.4.

We task Pepper with scooping up rice from a blue container and dropping the

scoop of rice in a target bowl. For this task, we assume there is a separate process

28

Figure 4.3: Spoon trajectories attempted for this task. Red indicates the human teacher

marked that attempt as a failure, green indicates success. The learned trajectory after

six iterations is in blue. The black dotted line is the demonstration.

that ensures there is rice ready to be scooped. Future work may include learning

preparatory scraping motions with the spoon to position the rice so that it can be

easily scooped, and may include incorporating vision to find the rice, stochasticity,

or other modifications to ensure that the robot continues to find rice as the bowl is

emptied. When vision is incorporated in future work, we hope to experiment with

augmenting the learning algorithm to detect the type of food and to learn different

trajectories for different types of food. Additionally, we hope to do user studies on

the usefulness of the feeding trajectories. Before PSPS is deployed in a user study,

safety features to detect anomalies and shut off the robot to prevent injury (like those

presented in [30]) should be included. For now, for this task, our robot runs blind (no

visual input) and we reset the bowl to be equally full of rice between each attempt so

that repeated scoops of rice from the same part of the bowl are equally successful.

We kinesthetically demonstrate a single serving trajectory for the robot that travels

from the starting position to the bowl with rice in it, scoops up some rice, and deposits

the rice in the target bowl. We weigh the amount of rice deposited in the target

bowl after execution, and the trajectory is considered to be a failure by the teacher if

the test trajectory deposits less than 50 percent of the rice that was deposited in the

bowl by the training trajectory. In our experiment, the training trajectory deposited

29.8 grams of rice onto the target bowl, so whenever the robot asked us to judge a

trajectory, we deemed the trajectory a failure if it deposited less than 14.9 grams of

rice in the target bowl. Fig. 4.1a shows the Pepper robot being taught a sample serving

trajectory kinesthetically and Fig. 4.1b shows the Pepper robot learning improvements

to the training trajectory.

29

Figure 4.4: The arrangement of joints defining the joint space of Pepper’s left arm [29]

We use the same cost/constraint pair that we used in the 2D simulation, with

the cost function minimizing the roughness (sum of squared second derivative) of the

trajectory, and the distance between two trajectories being measured by the square

root of the average square distance between them. We measure both the roughness of

trajectories and the distance between trajectories in the joint space of the robot’s arm.

We use the left arm of the Pepper robot, and the joint configuration is displayed in

Fig. 4.4.

4.3.4 Pepper Robot Rice Serving Task Results

We initialize δ to 0.1 radians, after confirming in a simulated environment that that

would not lead to dangerous robot trajectories. After six iterations of the PSPS algo-

rithm, the robot had bounded δ to between 0.15 and 0.15625 radians. A plot of the

amount of rice deposited in the destination bowl as a function of the δ value used in

trajectory calculation is given in Fig. 4.5.

From this plot, we find that the geometric search for the correct δ during the PSPS

algorithm is effective. We find that for this example, the data follow the expected

trend that trajectories that are above a certain difference from the training trajectory

will tend to fail to satisfy the teacher’s task constraints.

To compute how much PSPS was able to optimize the trained trajectory, we com-

30

Figure 4.5: The weight of rice transferred to the target bowl at each learning step

in the PSPS algorithm, parameterized by the distance constraint parameter δ. Red

points are those marked by the teacher as failures. Green points succeeded. Orange

points show tests that were run outside of the PSPS algorithm to confirm that the

PSPS algorithm had found the correct threshold δ value of 0.15 radians (vertical line)

pute, using finite differences, the total sum of squared second derivatives (the cost

function) for the training trajectory and the solution found by PSPS. The training tra-

jectory had a total cost of 9.78 radians/second2. PSPS’s learned trajectory had a total

cost of 0.461 radians/second2, showing a marked improvement over the cost function.

To visualize the improvement of the PSPS algorithm’s result over the roughness cost,

we plot the learned (δ = 0.15) trajectory for each joint in Fig. 4.6. We see from Fig. 4.6

that the PSPS algorithm has indeed been able to improve the smoothness of the joint

trajectories, while, as noted in Fig. 4.5, still satisfying the task constraints.

From Fig. 4.6, not only do we see confirmation that the PSPS algorithm is able

to smooth out the trajectory, but we also see evidence for why that is the case. We

hypothesized that a robot could improve on a kinesthetically taught trajectory if the

teacher were insufficiently coordinated to move the joints simultaneously along the

desired trajectories. The regions of roughly constant value in various joints in Fig. 4.6

suggest the difficulty in manipulating a high-DOF robot kinesthetically. In particular,

they show how generally only a few joints can be easily controlled at a time by someone

physically moving the robot to teach it a trajectory, and that frictional forces will tend

to keep joints not explicitly manipulated at a constant value. PSPS allows the robot

to smooth out the times when a joint is active into regions where the joint was not

actively manipulated.

We also note that joint LElbowYaw (red line) was hardly moved during kinesthetic

training, and that our experiment in PSPS also kept that joint fixed. The fact that

PSPS maintained the constancy of that joint is related to the fact that the cost function

31

we used for this experiment was defined in joint space. This suggests future work where

we experiment with either more complicated cost functions or with cost functions

defined in configuration space, as that may enable the robot to improve trajectories by

manipulating joints that had been held constant.

Figure 4.6: A comparison of the demonstration joint trajectories (dotted) and the

learned joint trajectories (solid lines). Pepper’s joints are defined in Fig. 4.4. General

descriptions of motion components are given at the bottom of the chart

4.4 Summary

In this chapter, we considered the challenge of a robot modifying a kinesthetically

trained trajectory to better suit the robot’s kinematics and cost function. We intro-

duced the PSPS algorithm and showed how it uses feedback from a human teacher to

decrease the cost to the robot of performing the trajectory while still completing the

assigned task. Our experiments were performed on a real Pepper robot.

32

Chapter 5

Caprese Salad Case Study

In this chapter, we present our caprese salad plating robot, a UR5 robot with a fork at-

tached to its end-effector. We explain how the robot performs the caprese salad plating

task using kinesthetic learning and recorded trajectory replay. The food-acquisition

task is approximately rotationally symmetric around the center of the food item. We

show how the robot is able to expand its workspace by rotating the recorded pickup

trajectories and replaying them in simulation to compute feasible, lower-cost trajecto-

ries.

5.1 Caprese Salad Plating

One of the current difficulties in manipulating food is the lack of an accurate model for

deformable food. For example, consider the task of plating a caprese salad by picking

and placing alternating slices of tomatoes and cheese using a single fork. One strategy

for performing the acquisition of slices is to pierce each slice using a vertical approach,

tilt the fork to a horizontal position (bending the tomato or cheese slice in the process),

and lift the fork with the prongs held horizontally.

This complicated manipulation is shown in Figure 5.1, where the fork is tilted to

a horizontal position before being lifted off the blue cutting board. In the example

shown, the tomato slice remains on the fork when lifted vertically. We note that in

this example, holding the fork prongs vertically (instead of horizontally) releases the

tomato from the fork. This has two ramifications. First, we can use this behavior

to deposit the tomato slice at the desired location by moving the fork to the desired

location before tilting the fork prongs to vertical. Second, this manipulation problem

with a ripe tomato slice is complicated enough that vertical skewering and vertical

carrying is not sufficient.

While it would be possible to use a more complicated end-effector design to simplify

the manipulation process, we are interested in using a multi-purpose tool like a fork that

can be also used for other tasks as well. Additionally, we are specifically interested in

33

(a) Approach with prongs

vertical

(b) Rotate fork (c) Lift with prongs hori-

zontal

Figure 5.1: UR5 robot performing a complicated tomato slice acquisition motion as

part of a plating task. A video of the robot plating the caprese salad is available at

https://youtu.be/BsJ47_J4oec

complicated manipulation strategies for deformable, pierceable, and bendable objects

because these manipulation strategies are not as well understood.

Without a deformable, pierceable, bendable physics model of a tomato slice, it

is not possible for an learning algorithm to develop this type of pickup strategy in

simulation. Instead of having the robot learn this pickup strategy from scratch, we

give the robot a single demonstration trajectory and have the robot mimic the training

trajectory as closely as possible. This trajectory replay is a type of behavioral cloning,

in which a robot learns a policy that imitates training trajectories without learning a

reward function [31]. We find that trajectory replay is able to accomplish the desired

task using only a single demonstration in the real world. This suggests the power of

trajectory replay for manipulation tasks of hard-to-model objects like food.

We implement our trajectory replay of a single demonstration in the following way.

First, a training trajectory is recorded on a small Niryo One robot [10] with a fork, and

the trajectory of the fork tip is computed in task space based on joint angle recordings,

as shown in Figure 5.2. We chose to record on a Niryo One robot because the Niryo

One robot is light, small, and easy for a single person to manipulate dextrously. We

also tested recording fork trajectories directly on the UR5 robot, but found it was

cumbersome to move the relatively large links of the robot.

Second, a vision system identifies the location of a tomato slice relative to the base

of a UR5 robot. We use a RealSense camera mounted on the wrist of the UR5 to

identify the location of the largest food items on the table. Here, we use the color

segmentation strategy explained in Section 2.3.

Finally, the task-space trajectory is translated to align with the tomato slice, and

34

https://youtu.be/BsJ47_J4oec

Figure 5.2: In kinesthetic teaching, the robot is manually moved through the motion

of picking up a tomato slice

(a) UR5 with wrist-mounted camera (b) Wrist camera view with identified food

Figure 5.3: The vision system using the wrist-mounted camera to localize food items

on the table

35

Figure 5.4: The fork can be translated directly toward the base of the Niryo One robot

pictured on the left, but the resulting fork positions would lead to self collision on the

much larger UR5 robot pictured on the right

we use a continuous inverse kinematics solution to give target joint positions for the

UR5 robot to follow. We find that the same recorded trajectory is very often able to

successfully pick up the tomato slice and also the mozzarella slice. We did not find it

necessary to record a separate trajectory for tomato and mozzarella slices.

However, one downside of this implementation of direct behavioral cloning is the

lack of modification to account for the kinematics of the robot. In particular, exactly

following the demonstration trajectory may not be feasible for certain tomato slice

locations with the given robot kinematics, or may lead the robot to travel through

awkward joint trajectories including possibly near singularities with high joint veloc-

ities. Figure 5.4 shows how some reasonable fork poses on a Niryo One robot would

lead to self-collisions on the larger UR5 robot.

In order to make the power of behavioral cloning more flexible, we present a search-

based method to consider rotations of the original trajectory in order to minimize the

cost of the trajectory for the particular robot kinematics.

5.2 Approach

We want to modify the demonstrated trajectory to better fit the kinematics of the

robot. For this work, we allow the robot to modify the demonstrated trajectory by

rotating the trajectory around a vertical axis centered at the tomato slice. We allow

this type of rotation as we assume that those rotated trajectories will have an equal

36

success rate in picking up rotationally symmetric slices. Our goal is to find rotated

trajectories that have the lowest cost to perform.

Our algorithm works by taking the desired trajectory to replicate and rotating it

around a vertical line passing through the center of the tomato slice. We perform a

grid search over N different rotations, evenly dividing the possible rotation angles in

[0, 2π). For each of these trajectories, we use an analytic inverse kinematics solver [32]

to provide possible joint configurations at the start of the rotated trajectory. We

then plan through the trajectory and check if that trajectory is collision free. We

use MoveIt! [33] to easily handle collision checking, including checking whether the

trajectory would collide with the table that the robot arm is mounted on.

We performed our experiments on a UR5 robot, which has six degrees of freedom.

Therefore, given a desired trajectory for the fork tip pose, and an initial joint config-

uration at the start, the joint space trajectory of the UR5 robot is uniquely defined.

The above only holds so long as the robot does not hit a joint singularity, but we note

that the set of exact joint singularities within the workspace has probability zero for

feasible trajectories in task space.

If a trajectory is collision-free, we compute for that trajectory the cost of the tra-

jectory. For this work, we use the Euclidean length of the joint-space path as the cost

of the trajectory. This encourages the robot to choose paths that reduce the overall

distance traveled by the joints, which in turn reduces the average speed that the joints

would need to travel. We consider our cost function to be a measure of the “com-

fort” of the robot in performing the trajectory. Other more complicated cost functions

could include penalty terms for the static torque on the robot joints due to gravity

throughout the trajectory or dynamic terms that penalize joint acceleration during the

trajectory.

5.3 Results

We find that this approach is able to perform the expected optimizations. We consider

a recorded trajectory for moving a fork down, rotating it to pick up a tomato slice,

and lifting it (Figure 5.1). If we do not rotate the recorded trajectory, the fork prongs

point in the negative X direction when lifting the tomato. The cost of that unrotated

trajectory, for different locations of the tomato slice, relative to the base of the robot

at (0,0), is shown in Figure 5.5.

When we do not allow for rotations, we find many locations for the tomato slice

where the robot is not able to perform the desired trajectory because the resulting

trajectory would head outside of the robot’s workspace, or would lead to a self-collision.

For example, in Figure 5.5, the infeasible area directly to the left of the origin is due

to self collisions for poses similar to that displayed on the UR5 in Figure 5.4.

However, when we do allow for the robot to change the behavioral cloned trajec-

37

Figure 5.5: We plot the cost of performing the recorded trajectory at various locations

without rotating the trajectory. For the given X-Y location on the table, we plot the

minimal joint space path length required to perform the recorded trajectory at that

location. The recorded trajectory points the fork prongs in the negative X direction.

The insets show, to scale, the fork tip path during the pickup trajectory. The base

of the robot is at (0,0). No color means that the resulting trajectory is not feasible

(either extends outside the reach of the robot, or results in collision)

38

Figure 5.6: We plot the cost of performing the recorded trajectory at various locations,

allowing the robot to rotate the trajectory. For the given X-Y location on the table, we

plot the minimal joint space path length required to perform the recorded trajectory

(rotated by some multiple of π/8 radians) at that location. The base of the robot is

at (0,0). No color means that the resulting trajectory is not feasible (either extends

outside the reach of the robot, or results in collision)

tory by rotating the trajectory, we expand the effective workspace of the robot and

reduce the cost of performing the trajectory. Additionally, since the UR5 robot’s first

joint allows for rotations around the vertical axis, we expect that if we allow vertical

rotations of the target trajectory as well, then the resulting feasible workspace should

also be rotationally symmetric around the vertical axis centered at the robot center. In

particular, if we move the target tomato-slice location in a circle centered at the robot

base, we expect the robot to be able to rotate the solution trajectory a corresponding

amount and find a solution to the new target location with the same cost. For compu-

tational efficiency, we discretize rotations of the original trajectory into multiples of π/8

radians (dividing the circle into 16 components). Accounting for this approximation,

we find that the resulting costs do indeed appear to be rotationally symmetric.

We find that the robot can rotate a recorded motion to effectively increase its

workspace in order to perform the given task. We also note that in locations that

were part of the workspace without rotation, the robot can still choose to rotate the

trajectory in order to reduce the cost of performing the trajectory. Using our approach,

a new robot with new kinematic properties can efficiently figure out a good rotation of

the original trajectory to use to complete the assigned task.

39

5.4 Summary

In this chapter, we presented our caprese salad plating robot. The demonstration

trajectory was trained kinesthetically on one robot (a Niryo One robot with a fork), and

then the resulting trajectory is transferred to the UR5 robot. We found that the robot

was able to successfully perform the caprese salad plating task. We further showed

that the robot could rotate the recorded trajectories and replay them in simulation to

compute feasible, lower-cost trajectories.

40

Chapter 6

Conclusion and Future Work

In this work, we presented our approach to the problem of robots manipulating food,

addressing in particular questions about how to train a robot in visual identification,

the importance of feedback and error correction strategies, and how to improve kines-

thetically trained food manipulation trajectories. As part of this work, we developed

vision-based feeding robots and food-plating robots in the real world using Pepper,

Niryo One, Kinova MICO, and UR5 robots.

6.1 Conclusion

We explored strategies through which a food manipulation robot is able to use vision to

identify the location types of food items that may be presented. If the object is being

localized on a plane, the robot can use RGB image-processing techniques to identify

the 3D location of the object. We showed the use of color segmentation to train a

robot to identify objects. We introduced the idea of “proxy classes,” which could be

used to quickly train a robot how to recognize a new object based on similar objects

it resembles. If the object is not constrained to lie on a plane, we showed how the

robot can use an RGB-D camera and a point-cloud registration algorithm to identify

the location of the object.

In our research on error correction and feedback, we presented our complete feeding

robot implemented on both a Kinova MICO robot and a Niryo One robot. On the

Kinova MICO robot, we highlighted the importance of visual feedback to allow more

robust feeding execution. By introducing a vision-based approach we can make the

system more intelligent and also more autonomous. The developed system is fully

capable of feeding a user using a spoon with different types of food like rice or peanuts,

and uses visual feedback to ensure spoons are full of food when presented to the user.

We also presented the Parameterized Similar Path Search (PSPS) algorithm, a

novel approach to improve kinesthetic trajectory learning for feeding robots, in which

the robot iteratively improves the trajectory demonstrated by the caretaker over a

41

known cost function and requests evaluations from the caretaker to check compliance

with unknown task constraints. We analyzed the performance of PSPS in a two-

dimensional simulation as well as on a real Pepper robot performing a rice serving

task. We found that the PSPS algorithm is able to successfully improve the training

trajectory based on feedback on whether the full tested paths satisfied the caretaker’s

task constraints, even without receiving feedback from the caretaker on the specific

times failing trajectories violated task constraints.

Finally, we presented our caprese salad plating robot. We showed how the robot

was trained using kinesthetic teaching on a different robot, and how our vision module

allowed the robot to detect the desired food items on the table. We showed how the

robot could expand its workspace and better accomodate its kinematics by rotating

the recorded trajectory in simulation to compute feasible, lower-cost trajectories.

Throughout this work, we approached these problems with an eye to real-world

implementation on robots. We were able to successfully manipulate food items ranging

from rice and peanuts to large tomato and cheese slices. Our implementations were

generic enough to be able to be successfully used on several real-world robots: Pepper,

Niryo One, Kinova MICO, and the UR5.

6.2 Future Work

We have shown how visual perception allows our robots to plan manipulations in their

environment. In future work, we expect that, once contact is made with the object,

then additional sensory modalities can help localize the object during manipulation,

such as force, tactile-vibration, and acoustic sensing. Given the effectiveness in the

spoon-facing vision feedback in identifying the mass of food on the spoon, future work

could investigate using that vision feedback system to control the depth to which the

spoon digs into the food, so that the feeding system can alter its serving strategy to

accommodate the gradually decreasing level of food in the serving bowl. Additionally,

we could more tightly close the feedback loop by gathering feedback throughout the

food acquisition motion, rather than just at the end to check for success or failure.

Another area of future work would be to kinesthetically teach multiple trajectories

to the robot and have the robot incorporate them into a food manipulation repertoire.

This research area could investigate how to average similar trajectories or how to choose

which trajectory is most likely to be successful on a given food item.

The PSPS algorithm, while useful independently, also suggests future avenues of

research in which results from several runs of the PSPS algorithm could then be fed

into learning from demonstration algorithms in order to generalize these lower-cost

trajectories onto new environments.

Another area of future work would be to consider more complicated applications

of trajectory modification in task space within the framework of the PSPS algorithm.

42

In this work, we either considered joint space modifications (Chapter 4) or simple

rotations of the training trajectory (Chapter 5). More complicated trajectory mod-

ification approaches might use STOMP [34] to perform the optimization step of the

PSPS algorithm.

We showed how, for rotationally-symmetric tasks, the robot can take advantage

of that task symmetry to increase its workspace and decrease task cost by rotating

the recorded trajectory. Future work could explore cases where the probability of task

success varies based on how much the trajectory is rotated. In that case, we expect

to find a tradeoff between the probability of task success and the reduced cost of the

rotated trajectory.

43

44

Appendix A

Customized Robotic Platform for

Manipulation

In order to run experiments and incorporate vision into a feeding robot, we decided to

start our research by building our own feeding robot with visual feedback. An image

of our complete feeding robot setup with visual feedback is shown in Figure A.1.

We wanted an inexpensive system we could modify as needed, and which was rela-

tively portable, so it could be eventually be transported to potential users in real-world

environments. We chose to base our robot on the open-source Niryo One robot arm,

and successfully designed and implemented a feeding robot arm that we could use as a

test platform for new robot feeding advances. We contribute our original end-effector

design that is attached to the Niryo robot arm, as well as the lessons we learned while

building a custom open source feeding robot. After success with this custom-built

robot described in this appendix, we purchased additional, pre-built Niryo One robots

and added our custom end-effector to those.

A.1 Related Work

Similar reviews of the design and creation of feeding robots have been addressed in [35],

[4], [36], etc. This appendix extends on those prior works by giving our own learnings

generated in the design and construction process, as well as in improvements in the

feeding robot design itself by means of a camera to detect successful food acquisition.

A.2 Hardware Design and Construction

The fundamental design of our feeding arm is the Niryo One arm, which is an open-

source robotic arm designed by the Niryo corporation.1 We 3D printed the 3D-printable

1https://niryo.com/.

45

https://niryo.com/

Figure A.1: The complete feeding robot setup

components in PLA plastic. The longest links are constructed from 1.5 inch hollow

aluminum tubes which we cut and drilled to the desired length.2 We found that

compressing the tubes from circles into slight ellipses after inserting them into the

plastic sockets gave them a very snug fit on the robot. While we were able to find GT2

timing belts online, we were not able to find a circular timing belt of the correct length,

so we spliced two ends of a timing belt together by cutting a single step function into

each of the two ends, and gluing and taping them together with small steel pins driven

through the ridges in the strips to hold them together. We also needed to construct

a support spring that is placed inside the shoulder joint of the robot. We did so by

wrapping a 0.095 inch high carbon steel wire around 1.5 inch aluminum tube.

We designed and printed a custom end-effector in SolidWorks3 to transform the

Niryo One from a universal manipulator into a spoon-feeding-specific robot arm. The

end-effector consists of an attachable mount to the robot arm, an adjustable holder for

the spoon handle, and a spoon-facing camera mount. We base the attachable mount

shape from STL example attachable mounts provided by Niryo. We were not able to

find SolidWorks design files for the attachable mount directly. A bit of experimentation

gave us a lightweight design that ensured that the spoon would be seen by the camera

but also that the camera would not interfere with the use of the spoon when eating.

The spoon holder is shown in Figure A.2.

We attach an RGB camera, in particular an IDS uEye XS camera,4 to the camera

mount on the spoon holder, and wire it via a usb cable along the outside of the arm of

the robot to the laptop. We also attach an RGB-D camera, in particular a Kinect V1,

to the laptop so that the spoon-feeding robot arm can have situational awareness of

its surroundings. The Kinect is placed where it can see the robot so that the camera

2Thanks to Ceci Morales for assistance in the tool shop.
3https://www.solidworks.com/.
4https://www.ids-imaging.us/.

46

https://www.solidworks.com/
https://www.ids-imaging.us/

Figure A.2: Spoon holder with camera mount

frame of reference can be easily calibrated to the base of the robot.

A.3 Electronics Design and Construction

The actuation of the stepper motors and the servo motors is different. The servo motors

we use are the small XL-320 motors from Dynamixel. They require a 5Vpower supply,

and take command packets over a single TTL wire. Furthermore, the servo motors

can be daisy chained, so there is a single wire from the Arduino that sends command

packets to all the motors. The message in the command packet (syntax specified at

the Robotis e-Manual5) specifies the target motor and the the requested action. We

use an XL320 Arduino helper library6 to actually construct and send these messages.

For safety purposes, we also want to connect an emergency stop button to the

stepper motors to make it trivial to stop them suddenly. Given the types of forces we

find when the robot is unladen, the servo motors remain stationary when turned off.

We therefore chose for the emergency stop button to simply turn off the power to the

servo motors when pushed, as seen in Figure A.3.

The stepper motors are controlled by coordinated pulses along pairs of electromag-

netic coils in each motor. Like in the Niryo V1,7 we pass each of these four wires from

each motor all the way to the base of the robot. However, to prevent the overheating

5http://emanual.robotis.com/docs/en/dxl/x/xl320/.
6https://github.com/hackerspace-adelaide/XL320.
7See blog post on changes made to Niryo One in V2: https://niryo.com/2017/10/17/

niryo-one-introduction-new-upgraded-version-october-2017/.

47

http://emanual.robotis.com/docs/en/dxl/x/xl320/
https://github.com/hackerspace-adelaide/XL320
https://niryo.com/2017/10/17/niryo-one-introduction-new-upgraded-version-october-2017/
https://niryo.com/2017/10/17/niryo-one-introduction-new-upgraded-version-october-2017/

E Stop

servo
−
+ 5V

P5

arduino

Figure A.3: Power-breaking emergency stop for servo motors

discussed in Niryo V1, we power the motors with stepper drivers with very large heat

sinks. The stepper drivers are powered by the 12V power source, and we are able to

customize the power consumption of each stepper driver through switches on the side.

Different amounts of current on the different stepper drivers results in different max

torque that the motor is able to supply. We choose 2A for the first three joints, and

only draw 1.5A for the rotation of the forearm joint because we find it does not require

as large torques.

For the emergency stop of the stepper motors, we chose not to cut the power to the

stepper motors when the emergency stop was pressed. Relative to the force of gravity,

the stepper motors have very little friction or similar reactive torque when unpowered.

This causes the robot to fall quickly and potentially cause itself injuries, unless it is

supported when the power is disconnected. Though the robot is relatively light, there

is also some chance that falling could cause user injuries as well. We did not want

the robot to fall suddenly when the emergency stop was pressed. Therefore, we chose

to implement a software-based stop for the stepper motors when the emergency stop

is pressed, as shown in Figure A.4. The Arduino reads the state of the emergency

stop signal through an input pin, and stops sending stepper pulse signals when the

emergency stop is pressed. A more robust hardware-based solution that still maintains

power to the stepper motors would be to entirely cut power to the Arduino. However,

since we connect the Arduino to a laptop through its USB port, it is not trivial to

disconnect the power to the Arduino since the Arduino is able to draw power through

the USB port.

We also wire a disable button to the enable pins of the stepper drivers, shown in

Figure A.4. Pressing the disable button acts like cutting the power to the stepper

drivers. The stepper motors lose their rigidity completely, and the user is able to

re-orient the related joints.

Since our custom-built Niryo does not use encoders on the stepper motors (though

the pre-built Niryo One robots we later purchased do), there is no feedback from the

stepper motors on the position of the related joints. We instead rely on the user to

initialize the joints in a starting position, and the stepper motors are then controlled

48

E Stop

stepper

−
+ 5V

−
+ 12V

P2

P3
arduino

pull

enable
release

Figure A.4: Software-based emergency stop and disable button for stepper motors

in an open-loop fashion based on the known angular change whenever a pulse is sent

to the stepper motor. We manually calibrate the gear ratio between the stepper motor

and the joints themselves. This gear ratio tells us how many pulses are necessary to

send to the stepper driver in order to move the robot joint a certain angle. We ran

a few trials to ensure that the open loop control was reasonable by commanding the

second joint to turn 10 degrees five times in the same direction, and then we reset the

motor to the starting position, and then commanded the motor to turn 50 degrees in

one motion. On visual inspection, comparing pencil marks that were roughly 1mm in

width on the outer structure of the joint, the motor was able to accurately replicate its

previous motor position on sequential trials. In order for the open loop stepper motor

control to work, the robot must be turned on in a known initial starting position. The

disable button is especially useful for easily resetting the robot to the starting position.

A.4 Firmware Design and Implementation

All motors are commanded from a single Arduino thread. We found that commands

could be dropped if they were sent to the servo motors with too little space between

the commands. We did not see any issue with dropped commands if commands were

sent with a 10ms pause between them. However, simply adding a 10ms delay function

call and then sending the next servo command will cause the stepper motors to stop

moving during those 10ms. If commands are sent to the servo motors frequently, those

pauses cause severe vibrations. Instead, whenever a command is requested for the servo

motors, that command is added to a queue. Periodically, the Arduino’s single thread

of execution will check to see if both 1) there is a request for the servo motors on the

queue and 2) it has been more than 10ms since the last request. If so, the next request

will be pulled off the servo queue and sent to the motors. In this way, the execution

thread is not delayed by the need to send servo commands with a gap between them.

The stepper motors are controlled via pulses from the single execution thread. In

order to control all motors simultaneously, the single execution thread maintains a

record of when the last pulse was sent to each stepper motor. It then iteratively

49

runs over the list of motors to check whether it has been more than a certain amount

of time since the last pulse, and if so, it sends a pulse to that stepper motor and

resets the last recorded pulse time. The time between pulses to each stepper motor

depends on the speed that we want the motor to travel. In our firmware, the Arduino

receives requested joint angles from the controller. It then compares the requested

joint angles to the current joint angles, and determines the required speed to move

each joint in order to have each joint achieve the desired joint angles after 150ms. We

do put a maximum speed on each joint angle, so some joints may achieve the requested

joint states after others. We also add a maximum acceleration for each joint, which

leads to smoother motions, but is another reason that joints may not reach the target

locations at exactly the same time. For our work, we believe that these motor control

specifications are sufficiently smooth and sufficiently precise to satisfy our use case.

The syntax to send joint commands to the Arduino is inspired by the syntax of the

iRobot Create8. In particular, we first send a “command id” byte, and then send a

sequence of bytes which are parameters for that command. In our case we only ever

send commands for moving the robot to the joint angles that follow, so our first byte is

always the same command id. However, prefixing our commands with this “command

id” allows extensibility in the future for us to communicate other commands. Following

the “command id” byte corresponding to “move to the following joint positions”, we

send pairs of bytes (high byte first) that correspond, based on a pre-defined linear

transformation, to the desired joint angles. The linear transformation simply maps the

range of two bytes (0 to 65535) to the full range of possible joint angles we consider

that might be requested for any of the joints (-2π to 2π). The firmware maintains an

estimate for the current joint configuration.

A.5 Network Architecture

The components of the robot are in total connected as shown in Figure A.5. The

Arduino controls the servo motors directly through byte commands sent over TTL,

and controls the stepper motors by means of pulses sent to the stepper drivers. The

laptop takes in information via USB from the RGB and RGB-D cameras. The laptop

sends byte commands over USB to the Arduino to define the desired joint states, which

is then interpreted by the Arduino firmware into motor commands.

8The iRobot Create 2 Open Interface is specified at https://www.irobotweb.com/-/media/

MainSite/Files/About/STEM/Create/2018-07-19_iRobot_Roomba_600_Open_Interface_Spec.

pdf

50

https://www.irobotweb.com/-/media/MainSite/Files/About/STEM/Create/2018-07-19_iRobot_Roomba_600_Open_Interface_Spec.pdf
https://www.irobotweb.com/-/media/MainSite/Files/About/STEM/Create/2018-07-19_iRobot_Roomba_600_Open_Interface_Spec.pdf
https://www.irobotweb.com/-/media/MainSite/Files/About/STEM/Create/2018-07-19_iRobot_Roomba_600_Open_Interface_Spec.pdf

servo 3

servo 2

servo 1

Arduino

stepper 1stepper driver 1

stepper 2stepper driver 3

stepper 3stepper driver 4

stepper 4stepper driver 4

laptop

RGBcamera

RGB-D camera

Figure A.5: Network architecture

A.6 Software Design and Construction

We use ROS9 to organize our robotics code. The primary utility code we wrote for

our robot is accessed through a service called track pose service. This service

should be initialized when the robot is in the known initialization position. When

initialized, this service moves the robot to a neutral position and then waits for re-

quests. Requests to track pose service are either desired 6D poses of the end-effector

spoon, or are requests to stop the motors from moving. When a request is sent, the

track pose service computes a path from the current joint-state of the robot to a

joint-state where the end-effector matches the desired pose. It does this by computing

a the requested delta in cylindrical coordinates and a the requested rotational delta

in angle-axis representation that would move the tip of the spoon to the desired pose.

The reason we work in cylindrical coordinates is to try to avoid joint constraints due

to the tip of the spoon getting too close to the base of the robot. By working in

cylindrical coordinates, the default path between two points is a linear interpolation

of the two points written in cartesian coordinates (r, θ, z). Thus, during the path of

the end-effector, the end-effector never gets closer to the z-axis than at the start or

end position of the path. Had we used traditional linear interpolation of cartesian

coordinates (x, y, z), we might find cases where, when traveling from, say, (−1, 0, 0) to

(1, 0, 0), the robot would attempt to move its end-effector through its center at (0, 0, 0),

which would lead to a violation of joint constraints. While this reduces the probability

of the robot planning a path that violates joint constraints, it is nevertheless better

if the code that calls the track pose service compute for itself a feasible path and

9http://www.ros.org/.

51

http://www.ros.org/

then send requested poses that are nearby waypoints on that path.

The requested change in the end-effector is converted to changes in joint-angles by

means of the Jacobian. The code computes the Jacobian using MoveIt!10 and solves the

linear equation relating the desired position and rotation deltas to joint angle deltas:[
JcylJc
Jr

]
∆θ =

[
∆cyl

∆r

]
(A.1)

where Jc is the cartesian Jacobian relating changes in (x, y, z) coordinates of the

end-effector to changes in joint angles, Jcyl gives the relationship between changes in

cartesian coordinates to changes in cylindrical coordinates, and Jr is the rotational

Jacobian relating rotations written in angle-axis form to changes in joint angles. ∆cyl

gives the desired change in pose in cylindrical coordinates, and ∆r gives the desired

change in rotation in angle-axis coordinates. ∆θ gives a linear estimate of the requisite

joint angle change.

Given the resulting solution to this equation (solved using regularized least squares

to penalize large joint movements), the robot and then move the joints a small fraction

of those delta values, and then re-computes. Since this motion-planning process takes

repeated small steps toward the target pose, it is no extra computational work to

change the target pose, so this code is able to be very reactive to changes to the target

pose.

We call the track pose service from a state machine that runs on a node called

spoon feeder, and the specific pose we track depends on the current state of the

robot. For example, when the robot is picking up food, then the poses it sends

to the track pose service to track are generated by replaying a recorded spoon

trajectory (taken from [37, 24]) and then sending the current pose of the record-

ing. We have a separate ROS service that plays recorded spoon trajectories called

play trajectory service.

If the current robot state is moving the spoon to the mouth of the user, then the

pose the robot requests is a function of the current location of the detected mouth of

the user. The position of the user’s mouth is detected by means of a ROS node we call

DO (based on DiscriminativeOptimization, our approach to face-tracking). The robot

picks a 6D pose in relation to the user’s mouth for the spoon to move to, and sends

that pose to the track pose service. The DO node takes in inputs from the RGB-D

camera by means of a libfreenect node11 to translate messages from the Kinect into

ROS messages.

The state machine takes in inputs from the RGB camera to detect whether food

has been acquired on the spoon. Images from the RGB camera are converted to ROS

messages by means of a ueye cam node12.

10https://moveit.ros.org/.
11https://github.com/OpenKinect/libfreenect.
12http://wiki.ros.org/ueye_cam

52

https://moveit.ros.org/
https://github.com/OpenKinect/libfreenect
http://wiki.ros.org/ueye_cam

track pose service

arduino

spoon feeder

ueye cam

RGB camera

play trajectory service

DO

libfreenect

RGB-D camera

Figure A.6: Architecture of ROS nodes (in boxes) and connections to non-ROS software

interfaces

In total, the software architecture is drawn in Figure A.6.

53

54

Bibliography

[1] D. Christensen et al., “Prevalence of cerebral palsy, co-occurring autism spectrum

disorders, and motor functioning–autism and developmental disabilities monitor-

ing network, usa, 2008,” Developmental Medicine & Child Neurology, vol. 56, no. 1,

pp. 59–65, 2014.

[2] J. B. Reswick, “Development of feedback control prosthetic and orthotic devices,”

in Advances in Biomedical Engineering, Volume 2, pp. 139–217, Elsevier, 1972.

[3] M. Topping, “Early experience in the use of the handy 1 robotic aid to eating,”

Robotica, vol. 11, no. 6, p. 525527, 1993.

[4] M. Topping, “An overview of the development of handy 1, a rehabilitation robot

to assist the severely disabled,” Journal of Intelligent & Robotic Systems, vol. 34,

pp. 253–263, 07 2002. Copyright - Kluwer Academic Publishers 2002; Last updated

- 2014-08-23.

[5] Camanio Care, “Bestic.” http://www.camanio.com/us/products/bestic/. Ac-

cessed: 2018-05-09.

[6] Performance Health, “Meal buddy.” https://www.performancehealth.com/

meal-buddy-systems. Accessed: 2018-02-18.

[7] Mealtime Partners, Inc., “The mealtime partner dining system description.” http:

//www.mealtimepartners.com/dining/mealtime-partner-dining-device.

htm. Accessed: 2018-02-18.

[8] Secom Co., Ltd., “My spoon meal-assistance robot.” https://www.secom.co.jp/

english/myspoon/. Accessed: 2018-02-18.

[9] Obi, “Obi, robotic feeding device designed for home care.” https://meetobi.com.

Accessed: 2018-05-09.

[10] Niryo, “Niryo one.” https://niryo.com/niryo-one, 2019. Accessed: 2019-05-07.

[11] A. Campeau-Lecours, H. Lamontagne, S. Latour, P. Fauteux, V. Maheu,

F. Boucher, C. Deguire, and L.-J. C. L’Ecuyer, “Kinova modular robot arms

55

http://www.camanio.com/us/products/bestic/
https://www.performancehealth.com/meal-buddy-systems
https://www.performancehealth.com/meal-buddy-systems
http://www.mealtimepartners.com/dining/mealtime-partner-dining-device.htm
http://www.mealtimepartners.com/dining/mealtime-partner-dining-device.htm
http://www.mealtimepartners.com/dining/mealtime-partner-dining-device.htm
https://www.secom.co.jp/english/myspoon/
https://www.secom.co.jp/english/myspoon/
https://meetobi.com
https://niryo.com/niryo-one

for service robotics applications,” in Rapid Automation: Concepts, Methodologies,

Tools, and Applications, pp. 693–719, IGI Global, 2019.

[12] AppliedRobotics, “Applied robotics.” https://www.appliedrobotics.com,

2019. Accessed: 2019-05-07.

[13] S. Davis, J. Gray, and D. G. Caldwell, “An end effector based on the bernoulli prin-

ciple for handling sliced fruit and vegetables,” Robotics and Computer-Integrated

Manufacturing, vol. 24, no. 2, pp. 249–257, 2008.

[14] D. Gallenberger, T. Bhattacharjee, Y. Kim, and S. S. Srinivasa, “Transfer depends

on acquisition: Analyzing manipulation strategies for robotic feeding,” in 2019

14th ACM/IEEE International Conference on Human-Robot Interaction (HRI),

pp. 267–276, IEEE, 2019.

[15] L. V. Herlant, Algorithms, implementation, and studies on eating with a shared

control robot arm. PhD thesis, Carnegie Mellon University, 2018.

[16] M. de Jong, K. Zhang, A. M. Roth, T. Rhodes, R. Schmucker, C. Zhou, S. Ferreira,

J. Cartucho, and M. Veloso, “Towards a robust interactive and learning social

robot,” in Proceedings of the 17th International Conference on Autonomous Agents

and MultiAgent Systems, pp. 883–891, International Foundation for Autonomous

Agents and Multiagent Systems, 2018.

[17] A. Candeias, T. Rhodes, M. Marques, J. P. Costeira, and M. Veloso, “Vision

augmented robot feeding,” in European Conference on Computer Vision, pp. 50–

65, Springer, 2018.

[18] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[19] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose

estimation using part affinity fields,” in CVPR, 2017.

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,

real-time object detection,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 779–788, 2016.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object

detection with region proposal networks,” arXiv preprint arXiv:1506.01497, 2015.

[22] R. Diankov, Automated Construction of Robotic Manipulation Programs. PhD

thesis, Carnegie Mellon University, Robotics Institute, August 2010.

[23] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning

from demonstration,” Robotics and autonomous systems, vol. 57, no. 5, pp. 469–

483, 2009.

56

https://www.appliedrobotics.com

[24] T. Bhattacharjee, H. Song, G. Lee, and S. S. Srinivasa, “Food manipulation: A

cadence of haptic signals,” arXiv preprint arXiv:1804.08768, 2018.

[25] T. Rhodes and M. Veloso, “Robot-driven trajectory improvement for feeding

tasks,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pp. 2991–2996, IEEE, 2018.

[26] B. D. Argall, B. Browning, and M. Veloso, “Learning robot motion control with

demonstration and advice-operators,” in 2008 IEEE International Conference on

Robots and Systems (IROS), pp. 399–404, IEEE, 2008.

[27] P. J. Green and B. W. Silverman, Nonparametric regression and generalized linear

models: a roughness penalty approach. CRC Press, 1993.

[28] C. H. Reinsch, “Smoothing by spline functions,” Numerische mathematik, vol. 10,

no. 3, pp. 177–183, 1967.

[29] Aldebaran/SoftBank Robotics, “Pepper - documentation.” http://doc.

aldebaran.com/2-5/home_pepper.html. Accessed: 2018-02-27.

[30] D. Park, H. Kim, Y. Hoshi, Z. Erickson, A. Kapusta, and C. C. Kemp, “A multi-

modal execution monitor with anomaly classification for robot-assisted feeding,”

in 2016 IEEE International Conference on Robots and Systems (IROS), 2017.

[31] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al.,

“An algorithmic perspective on imitation learning,” Foundations and Trends R© in

Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[32] R. Diankov, Automated Construction of Robotic Manipulation Programs. PhD

thesis, Carnegie Mellon University, Robotics Institute, August 2010.

[33] I. A. Sucan and S. Chitta, “Moveit!,” Online at http://moveit. ros. org, 2013.

[34] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “Stomp:

Stochastic trajectory optimization for motion planning,” in 2011 IEEE interna-

tional conference on robotics and automation, pp. 4569–4574, IEEE, 2011.

[35] W.-K. Song and J. Kim, “Novel assistive robot for self-feeding,” in Robotic

Systems-Applications, Control and Programming, InTech, 2012.

[36] S. Ishii, S. Tanaka, and F. Hiramatsu, “Meal assistance robot for severely handi-

capped people,” in Proceedings of 1995 IEEE International Conference on Robotics

and Automation, vol. 2, pp. 1308–1313, IEEE, 1995.

[37] T. Bhattacharjee, H. Song, G. Lee, and S. S. Srinivasa, “A dataset of food ma-

nipulation strategies,” 2018.

57

http://doc.aldebaran.com/2-5/home_pepper.html
http://doc.aldebaran.com/2-5/home_pepper.html

	Introduction
	Motivation
	Objectives and Approach
	Contributions
	Reader's Guide to the Thesis

	Visual Perception for Food Manipulation
	Problem Statement
	Object Localization on a Table
	Color Segmentation for Object Recognition
	Deep-Network Object Recognition
	3D Object Localization using Point Clouds
	Summary

	Vision-based Feedback Systems and Error Recovery
	Food Acquisition
	Experimental Setup and Results
	Summary

	Robot-focused Trajectory Improvement
	Problem Statement and Formalization
	Parameterized Similar Path Search (PSPS)
	Experimental Evaluation and Results
	Summary

	Caprese Salad Case Study
	Caprese Salad Plating
	Approach
	Results
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Customized Robotic Platform for Manipulation
	Related Work
	Hardware Design and Construction
	Electronics Design and Construction
	Firmware Design and Implementation
	Network Architecture
	Software Design and Construction

