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Abstract

Robots with manipulation skills acquired through
trajectory cloning, a type of learning from demon-
stration, are able to accomplish complicated ma-
nipulation tasks. However, if the skill is demon-
strated on one arm and applied to a different arm
with different kinematics, the cloned trajectory may
not be well matched to the new robot’s kinemat-
ics and may not even be feasible on the new robot.
Additionally, even if the new skill is demonstrated
and applied on the same robot, the demonstrated
trajectory might be feasible in the training configu-
ration, but may not be feasible under desired trans-
lations of the trajectory, since the translated trajec-
tory might go outside the robot’s workspace. For
some tasks like picking up a tomato slice, rotations
of the trained trajectory would be successful in ac-
complishing the task. In this paper, we address how
a robotic system can use knowledge about its own
kinematic structure to rotate trained trajectories so
that the new trajectories are feasible and lower cost
on the robotic system, while still mimicking the tra-
jectories defined for the robot by the human demon-
strator.

1 Introduction

One of the current difficulties in manipulating food is the lack
of an accurate model for deformable food. For example, con-
sider the task of plating a caprese salad by picking and plac-
ing alternating slices of tomatoes and cheese using a single
fork. One strategy for performing the acquisition of slices
is to pierce each slice using a vertical approach, tilt the fork
to a horizontal position (bending the tomato in the process),
and lift the fork with the prongs held horizontally. The mid-
dle step of this complicated robotic manipulation is shown in
Figure 1, where the fork is being tilted to a horizontal position
before being lifted off the blue cutting board. In the example
shown, the tomato slice remains on the fork when lifted ver-
tically. We note that in this example, holding the fork prongs
vertically (instead of horizontally) releases the tomato from
the fork. This has two ramifications. First, we can use this
behavior to deposit the tomato slice at the desired location
by moving the fork to the desired location before tilting the

Figure 1: URS Robot performing a complicated tomato slice acqui-
sition

fork prongs to vertical. Second, this manipulation problem
with a ripe tomato slice is complicated enough that vertical
skewering and vertical carrying is not sufficient.

While it would be possible to use a more complicated end-
effector design to simplify the manipulation process, we are
interested in using a multi-purpose tool like a fork that can be
also used for other tasks as well. Additionally, we are specif-
ically interested in complicated manipulation strategies for
deformable, pierceable, and bendable objects because these
manipulation strategies are not as well understood.

Without a deformable, pierceable, bendable physics model
of a tomato slice, it is not possible for an learning algorithm
to develop this type of pickup strategy in simulation. Instead
of having the robot learn this pickup strategy from scratch,
we give the robot a single demonstration trajectory and have
the robot mimic the training trajectory as closely as possible.
This is a type of behavioral cloning, in which a robot learns
a policy that imitates training trajectories without learning a
reward function [Osa et al., 2018]. We find that behavioral
cloning is able to learn to accomplish the desired task using
only a single demonstration in the real world. This suggests
the power of behavior cloning for manipulation tasks of hard-
to-model objects like food.



Figure 2: The fork can be translated directly toward the base of the
Niryo One robot pictured on the left, but the resulting fork positions
would lead to self collision on the much larger URS robot pictured
on the right.

We implement our behavior cloning of a single demon-
stration in the following way. First, a training trajectory is
recorded on a small Niryo One robot [Niryo, 2019] with a
fork, and the trajectory of the fork tip is computed in task
space based on joint angle recordings. Second, a vision sys-
tem identifies the location of a tomato slice relative to the base
of a URS robot. Finally, the task-space trajectory is translated
to align with the tomato slice, and we use a continuous in-
verse kinematics solution to give target joint positions for the
URS robot to follow. We find that the recorded trajectory is
often able to successfully pick up the tomato slice.

However, one downside of this implementation of direct
behavioral cloning is the lack of modification to account for
the kinematics of the robot. In particular, exactly following
the demonstration trajectory may not be feasible for certain
tomato slice locations with the given robot kinematics, or
may lead the robot to travel through awkward joint trajec-
tories including possibly near singularities with high joint ve-
locities. Figure 2 shows how some reasonable fork poses on
a Niryo One robot would lead to self-collisions on the larger
URS robot.

In order to make the power of behavioral cloning more flex-
ible, we present a search-based method to consider rotations
of the original trajectory in order to minimize cost of the tra-
jectory for the particular robot kinematics.

2 Related Work

There are multiple current commercial approaches to robotic
picking and placing of food that do not require complicated
manipulation strategies. Most of these approaches use custom
grippers designed for specific types of food. For food slices,
the robot can slide support surfaces underneath the food from
both sides, and stabilize the slices from above. This principle
is used in the commercially available “Meat Gripper” built by
Applied Robotics [AppliedRobotics, 20191, which can pick
up and deposit sliced meats and cheeses. A surface attractive
gripper for food slices, in particular for tomato and cucum-
ber slices, is developed in [Davis et al., 2008]. Tt is based
on the Bernoulli principle, and shows great promise for food
picking, similar to the success seen by suction grasping for
packaged items.

Finally, forks have previously been used successfully
by [Gallenberger et al., 2019; Herlant, 2018] to pick up food
and bring it to a user’s mouth for autonomous feeding tasks.
In those works, a linear skewering motion (either vertical or
angled) was used to successfully pick up the food and bring
it to the user’s mouth. In this work, we consider behavioral
cloning to define the pickup trajectory, and consider the as-
sociated question of how to fit a cloned trajectory best to the
robot arm kinematics.

3 Approach

We want to modify the demonstrated trajectory to better fit the
kinematics of the robot. For this work, we allow the robot to
modify the demonstrated trajectory by rotating the trajectory
around a vertical axis centered at the tomato slice. We allow
this type of rotation as we assume that those rotated trajecto-
ries will have an equal success rate in picking up rotationally
symmetric objects. Our goal is to find rotated trajectories that
have the lowest cost to perform.

Our algorithm works by taking the desired trajectory to
replicate and rotating it around a vertical line passing through
the center of the tomato slice. We perform a grid search over
N different rotations, evenly dividing the possible rotation an-
gles in [0, 27). For each of these trajectories, we use an an-
alytic inverse kinematics solver [Diankov, 2010] to provide
possible starting joint configurations at the start of the rotated
trajectory. We then plan through the trajectory and check if
that trajectory is collision free. We use Movelt! [Sucan and
Chitta, 2013] to easily handle collision checking, including
checking whether the trajectory would collide with the table
that the robot arm is mounted on.

We performed our experiments on a URS robot which has 6
degrees of freedom. Therefore, given a desired trajectory for
the fork tip pose, and an initial joint configuration at the start,
the joint space trajectory of the URS robot is uniquely de-
fined. The above only holds so long as the robot does not hit
a joint singularity, but we note that the set of exact joint singu-
larities within the workspace has probability zero for feasible
trajectories in task space.

If a trajectory is collision-free, we compute for that trajec-
tory the cost of the trajectory. For this work, we used the Eu-
clidean length of the joint-space path as the cost of the trajec-
tory. This encouraged the robot to choose paths that reduced
the overall distance traveled by the joints, which in turn re-
duces the average speed that the joints would need to travel.
We consider our cost function to be a measure of the “com-
fort” of the robot in performing the trajectory. Other more
complicated cost functions could include penalty terms for
the static torque on the robot joints due to gravity throughout
the trajectory or dynamic terms that penalize joint accelera-
tion during the trajectory.

4 Results

We find that this approach was able to perform the expected
optimizations. We consider a recorded trajectory for moving
a fork down, rotating it to pick up a tomato slice (Figure 1),
and lifting it. If we do not rotate the recorded trajectory, the
fork prongs point in the negative X direction when lifting the
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Figure 3: For the given X-Y location on the table, we plot the mini-
mal joint space path length required to perform the recorded trajec-
tory at that location. The recorded trajectory points the fork prongs
in the negative X direction. The insets show to scale the fork tip
path during the pickup trajectory. The base of the robot is at (0,0).
No color means that the resulting trajectory is not feasible (either
extends outside the reach of the robot, or results in collision).

tomato. The cost of that unrotated trajectory, for different
locations of the tomato slice, relative to the base of the robot
at (0,0), is shown in Figure 3.

When we do not allow for rotations, we find many loca-
tions for the tomato slice where the robot is not able to per-
form the desired trajectory because the resulting trajectory
would head outside of the robot’s workspace, or would lead
to a self-collision. For example, in Figure 3, the infeasible
area directly to the left of the origin is due to self collisions
for poses similar to that displayed on the URS in Figure 2.

However, when we do allow for the robot to change the
behavioral cloned trajectory by rotating the trajectory, we ex-
pand the effective workspace of the robot and reduce the cost
of performing the trajectory. Additionally, since the URS
robot’s first joint allows for rotations around the vertical axis,
we expect that if we allow vertical rotations of the target tra-
jectory as well, then the resulting feasible workspace should
also be rotationally symmetric around the vertical axis cen-
tered at the robot center. In particular, if we moved the target
tomato-slice location in a circle centered at the robot base,
we expect the robot to be able to simply rotate the solution
trajectory a corresponding amount and find a solution to the
new target location with the same cost. For computational ef-
ficiency, we discretize rotations of the original trajectory by
a multiple of 7/8 (dividing the circle into 16 components).
Accounting for this approximation, we find that the resulting
costs do indeed appear to be rotationally symmetric.

We find that the robot can rotate a recorded motion to ef-
fectively increase its workspace in order to perform the given
task. We also note that in locations that were part of the
workspace without rotation, the robot can still choose to ro-
tate the trajectory in order to reduce the cost of performing the
trajectory. Using our approach, a new robot with new kine-
matic properties can efficiently figure out a good rotation of
the original trajectory to use to complete the assigned task.
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Figure 4: For the given X-Y location on the table, we plot the mini-
mal joint space path length required to perform the recorded trajec-
tory (rotated by some multiple of 7/8 radians) at that location. The
base of the robot is at (0,0). No color means that the resulting tra-
jectory is not feasible (either extends outside the reach of the robot,
or results in collision).

5 Conclusion and Future Work

In this work, we leverage the effectiveness of behavioral
cloning for food acquisition tasks. We show how the robot
is able to apply rotations to the demonstrated trajectory to re-
duce the cost of performing that trajectory and to expand the
set of feasible trajectories.

In future work, we hope to address additional, more com-
plicated perturbations of the demonstration trajectory, includ-
ing adding an allowable margin around the demonstration tra-
jectory. That is, if we give the robot some epsilon bound
where it only needs to stay within some distance € of the tra-
jectory in task space (instead of matching the trajectory points
exactly), we hope to see how much that constraint relaxation
will increase the workspace of the robot and the efficiency of
the robot performing the new trajectory.
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