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Abstract— Kinesthetic learning is a type of learning from
demonstration in which the teacher manually moves the robot
through the demonstrated trajectory. It shows great promise in
the area of assistive robotics since it enables a caretaker who
is not an expert in computer programming to communicate a
novel task to an assistive robot. However, the trajectory the
caretaker demonstrates to solve the task may be a high-cost
trajectory for the robot. The demonstrated trajectory could be
high-cost because the teacher does not know what trajectories
are easy or hard for the robot to perform, which would be due to
a limitation of the teacher’s knowledge, or because the teacher
has difficulty moving all the robotic joints precisely along the
desired trajectories, which would be due to a limitation of the
teacher’s coordination. We propose the Parameterized Similar
Path Search (PSPS) algorithm to extend kinesthetic learning so
that a robot can improve the learned trajectory over a known
cost function. This algorithm is based on active learning from
the robot through collaboration between the robot’s knowledge
of the cost function and the caretaker’s knowledge of the
constraints of the assigned task.

I. INTRODUCTION

In the United States, about three in every 1000 children
have cerebral palsy [6]. Since at least 1963, when James
Reswick developed the Case Research Arm Aid—Mark I,
researchers have been trying to create robotic aids to assist
in everyday activities for people living with disabilities [17].
In 1987, Mike Topping began work on HANDY-1, a robot
designed to help people with cerebral palsy at mealtimes, and
his product was eventually commercialized [22]. Compared
to a caretaker, a robot feeding system like HANDY-1 allows
the user to have more control over the choice of food for
each bite, allows the user to choose the pace of the meal,
allows for more consistent feeding, and makes the meal more
engaging for the user [22].

There are currently a number of commercial robotic prod-
ucts available which assist in the feeding task, including
Bestic [5], Meal Buddy [15], Mealtime Partner [10], My
Spoon [19], and Obi [11]. For these products, a human agent
(generally a caretaker) sets up the robot so that its feeding
trajectory reaches the appropriate feeding location for the
user. For example, for the Obi, the caretaker kinesthetically
shows the robot the target feeding location by holding down
a button and then manually moving the spoon to the desired
feeding position. The Obi then computes a trajectory from
the food to that target location [11].

Our research aims to improve the capabilities of au-
tonomous feeding robots to allow a caretaker to specify the
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full trajectory of the robotic arm rather than just the end
position. For example, certain foods with less friction, like
candy-coated chocolates, may require slower trajectories than
stickier foods, like fried rice. Specifying the full feeding
trajectory could also enable a caretaker to expand the ca-
pabilities of the feeding robot to perform additional tasks,
like combining foods before each bite [21] or dipping each
bite in sauce before moving the food to the feeding location.
Whenever a new type of food is introduced to the robot, or
if for any other reason a new trajectory needs to be taught,
kinesthetic learning can be used to train the new trajectory.

Kinesthetic learning (or, more broadly, any form of learn-
ing from demonstration) is a language-agnostic [7], effi-
cient [7], and intuitive [3] teaching method. Most important,
it could allow a person who is not an expert in computer
programming to communicate a novel task to a robotic
agent [2].

However, while a kinematic demonstration gives an ex-
ample solution to the new task, the demonstrated trajectory
can be high-cost for the robot [3]. For many cost functions,
like minimizing the acceleration over a fixed time range,
we do not expect the teacher to know offhand which tra-
jectories are high- or low-cost. Even if the teacher knows
a very low-cost trajectory, it can be challenging during a
demonstration for the teacher to move all the robot’s joints
simultaneously along that trajectory. Therefore, even though
the human teacher has the most domain knowledge about
what constitutes successful completion of the task, we expect
the robot to nevertheless be able to improve on the trajectory
taught by the teacher.

We contribute the Parameterized Similar Path Search
(PSPS) algorithm, which allows the robot to improve motions
learned from kinesthetic learning. We apply PSPS to feeding-
adjacent tasks and contribute our finding that for our example
task it is not necessary for the teacher to give specific
guidance on when a suggested trajectory failed in order to
see improvements to the learned trajectory from PSPS.

II. RELATED WORK

There are two main areas of related work: related work in-
volving feeding-assistance robots and related work involving
learning from demonstration.

A. Robotic Feeding Assistants

In addition to commercial robotic feeding assistants [5],
[10], [11], [15], [19], there are currently a number of ongo-
ing research projects to improve robotic feeding assistants,
including research into adding detection for the position of
the user’s mouth and whether the mouth is open [14], using



a general-purpose manipulator (e.g., the PR2 robot) for the
feeding task rather than a specialized robot [13], anomaly
detection to detect errors during the feeding task [12], and
robot designs for culture-specific food [21].

Rather than focusing on improving a particular feeding
action, or on the design of the feeding robot, we focus on
expanding the flexibility of feeding robots by introducing our
PSPS algorithm so that the flexibility of kinesthetic learning
can be better applied to the robotic feeding assistant domain.

Another current area of research in robotic feeding is in
shared autonomy, where the user and the robot together direct
the robotic arm during the feeding task [9]. Our work focuses
on optimizing trajectories for autonomous robots.

B. Learning from Demonstration
The idea of kinesthetic learning for assistive robotics is

not new. The Case Research Arm Aid—Mark I had included
kinesthetically programmed motions, but latency in retrieving
the programmed motions from the expensive magnetic tape
system made it impractical [17]. We hope that our PSPS
algorithm will encourage continued adoption of kinesthetic
learning for assistive robotics.

Work in learning from demonstration often focuses on the
robot finding a successful trajectory, like the seminal research
in [4], or in more recent work in learning a successful
trajectory in a dynamic environment [23]. Instead of focusing
on finding any successful trajectory, our work focuses finding
an improved successful trajectory over some robot-specific
cost function. Our addition of a robot-specific cost function
is similar to the type of work done in [18], where a successful
trajectory is improved to make it more energy-efficient.
In that work, the timing of the trajectory was changed in
order to improve its energy-efficiency. Our work presents a
framework for modifying the path itself (not just the timing)
in order to improve it over an arbitrary cost function.

Our learning from demonstration paradigm is similar to
Argall et al.’s work in [2] in that PSPS can consider feedback
from the teacher on what part of the trajectory was incorrect.
We find, however, that PSPS performs well without this
temporal feedback on the time of an error. The robot has
additional knowledge of what it is trying to optimize in the
PSPS algorithm since it knows the explicit cost function
and so the robot is able to perform this optimization even
without direct guidance from the teacher on how to do the
search. This combination of a robotic understanding of a
cost function with kinesthetic teaching also appears in [20],
but we differentiate our work in improving the learned
kinesthetic motion itself, rather than on when or how to apply
that motion.

Recent work has looked at the possibility of using neural
networks as a means of learning from a single demonstra-
tion [7]. For explainability and the ability to understand
mathematical bounds on robotic actions, we chose not to
follow this neural network approach.

III. PROBLEM STATEMENT AND FORMALIZATION

We address the problem of how an assistive robot can
improve on a trajectory learned through kinesthetic teaching.

The robot is kinesthetically trained on some task, as in
Fig. 1a, and our problem is to construct a learning algorithm
whereby the robot can improve on that task, as in Fig. 1b.

(a) Pepper learning from
kinesthetic training

(b) Pepper improving learned
trajectory using PSPS

Fig. 1: Images of the Pepper robot learning the rice serving
task presented in Section V. See also the accompanying
video for a demonstration.

For an assistive feeding robot with m degrees of free-
dom, let J be the set of valid static configurations J =
{(j1, j2, . . . , jm) ∈ Rm} where ji is the parameterization
of the ith degree of freedom. For example, if the ith degree
of freedom corresponds to a revolute joint, then ji would
measure the angle of that joint. We consider a trajectory to be
a set of pairs of joint states and times {(j1, t1), . . . , (jk, tk)},
with ji ∈ J , ti ∈ R, and ti < ti+1. We call the set of all
trajectories Φ. Since our robot is trained kinesthetically, the
training demonstration is an element of the set Φ.

We assume there exists some cost function C : Φ → R,
known to the robot, that gives a measure of the cost of any
trajectory. This cost function could be any cost, like the total
path length, the smoothness of the path, or the energy needed
to achieve that trajectory.

We assume that the teacher knows some task-success-
evaluation function S : Φ → {0, 1}, unknown to the robot,
that tells whether a trajectory satisfactorily completes the
task, in which case S returns 1, or not, in which case S
returns 0. The task-success-evaluation function is evaluated
by the teacher, and the teacher decides whether the robot’s
attempt to complete the task was successful. For example,
if the task is to scoop up a dumpling, dip it in sauce, and
move it to the feeding location, then the success function
only will return true if the robot accomplishes all those
tasks to the satisfaction of the teacher. The robot is able
to ask the teacher to evaluate the success function S(φ)
for any trajectory φ. While we allow the robot to ask the
teacher to evaluate any trajectory, that trajectory evaluation
does involve the robot actually executing the trajectory. Since



novel exploratory trajectories can be dangerous to execute on
a real robot, it’s important that the robot gradually change
and improve its trajectory around a known viable trajectory
rather than searching across the whole space of trajectories.

Each time the robot asks the teacher to evaluate the success
function is a learning step. Pursuant to [2], we consider
enhancing this learning problem by having the teacher also
provide an estimate of the time(s) when the robot trajectory
failed the task, though our experiments find satisfactory
results without including that component.

We define our problem as follows: The robot is shown
a single successful trajectory φd ∈ Φ. The robot asks the
teacher to evaluate the success of N different trajectories.
The robot’s learning problem is to find, after these learning
steps, a learned trajectory φl for which S(φl) = 1 and which
makes C(φd)− C(φl) as large as possible.

We note that this formalization can be extended naturally
to handle a stochastic success function Ss, where Ss(φ) re-
turns 1 with probability p(φ) and 0 with probability 1−p(φ),
by having the robot attempt to maximize E[Ss(φl)(C(φd)−
C(φl))]. This maximization can be empirically estimated by
evaluating Ss(φl) multiple times.

IV. PARAMETERIZED SIMILAR PATH SEARCH (PSPS)

The PSPS algorithm is based on the assumption that
similar trajectories are likely to have similar success val-
ues. Thus, we want the algorithm to focus its search on
trajectories that are similar to the training trajectory. We also
note that, because exploratory trajectories on a real robot
can be dangerous, having the learning algorithm focus on
trajectories similar to the kinesthetically trained trajectory is
also important from a safety perspective.

We therefore define the PSPS algorithm as follows. First,
the robot defines a function d : Φ → R ≥ 0 that measures
how different a new trajectory is from the training trajectory.1

Second, the robot picks some distance parameter δcur ∈ R
and searches over the set of trajectories {φ | d(φ) < δcur}
for the trajectory in that set that minimizes the cost C(φ).
The robot then performs a learning step and asks the teacher
if that trajectory is successful. If the trajectory is successful,
the robot increases δcur and repeats. If the trajectory is not
successful, the robot decreases δcur and repeats.

If the robot is given information about particular parts of
the trajectory that led to failure, the robot may also update
the distance function d to make the trajectory more closely
align to the training trajectory for those failing timesteps.

This active learning algorithm focuses the robot’s search
on trajectories that are likely to improve the cost function
C. We expect this algorithm to be robust to the choice of
the initial δcur, as it performs an exponential search in the δ
parameter. For safety reasons, to avoid the robot executing
dangerous trajectories, we suggest that δcur be initialized to
a small value and that the feasibility of the initial δcur be

1For linguistic convenience, we call d a “distance” function in this paper.
However, since d only defines a notion of “distance from the training
trajectory,” d does not satisfy the mathematical definition of a metric.

Algorithm 1 Parameterized Similar Path Search Algorithm

1: Initialize φcurrent best to the trained trajectory
2: Initialize δmin ← 0
3: Initialize δcur to some arbitrary value
4: Initialize isDeltaMaxKnown ← False
5: iteration ← 0
6: while iteration < N do
7: if isDeltaMaxKnown then
8: δcur ← (δmin + δmax)/2
9: else

10: δcur ← δcur ∗ 2
11: end if
12: Define similar trajectories Φδ = {φ | d(φ) < δcur}
13: φtest ← arg minφ∈Φδ

C(φ)
14: Ask teacher to evaluate success ← S(φtest)
15: if success then
16: φcurrent best ← φtest
17: δmin ← δcur
18: else
19: δmax ← δcur
20: isDeltaMaxKnown ← True
21: end if
22: if The robot receives additional feedback then
23: The robot updates d based on that feedback
24: end if
25: end while
26: return φcurrent best

tested in simulation before this algorithm is run on a new
robotic system.

V. EXPERIMENTAL EVALUATION AND RESULTS

We run experiments to better understand the feasibility
of this algorithm and its real-world performance. We are
interested in evaluating how much this algorithm is able
to optimize sample learned trajectories and whether it is
necessary for the teacher to provide information on the time
of trajectory failure (lines 22-23 in Algorithm 1) to make the
PSPS algorithm effective.

We ran the PSPS algorithm in both the 2D simulated
feeding world and on a real robotic rice serving task.

A. 2D Rice Serving Task Simulation Setup

We first test this algorithm in simulation in a low-
dimensional environment so it is easier to visualize its
behavior. We consider a two-dimensional world where the
robot state J is the x, y coordinates of a spoon. Inspired by
our feeding problem, the task constraints are to generate a
trajectory that passes from the start location to inside the rice
outlined in blue in the bowl on the right (to pick up the food)
and then to the green area in the bowl on the left (to deposit
the food) without hitting the table or sides of the bowls. The
locations of the bowls and table in this simulation, along
with the training trajectory curve demonstrated by human
input through a mouse, are displayed in Fig. 2.



Fig. 2: The feeding task trajectory input by teacher going
from start, to rice bowl (blue outline), to target bowl area
(green)

In this simulation, we set the goal to minimize the rough-
ness (sum of squared second derivative) of the trajectory,
while ensuring that the square root of the weighted average
square distance between the new path and the old path
over all timestamps is less than the constraint distance. This
choice of smoothness function combined with the distance
function is known [8] to be solved by natural cubic splines,
and we are able to use the MATLAB spaps function [16] at
each step of the PSPS algorithm to optimize the cost function
given the constraint.

In this simulation, the mechanics of the PSPS algorithm
interaction between teacher and simulated robot is as follows.
The simulated robot performs the learning optimization step
of the PSPS algorithm by computing a similar spline trajec-
tory to the training trajectory within some constraint distance
δ. Then, the simulated robot draws that new trajectory on the
screen for the evaluation of the teacher. The teacher inspects
that trajectory and reports back whether the trajectory meets
the teacher’s task constraints or not.

B. 2D Serving Task Simulation Results

The constraint is that the sum of square euclidean distances
between training and tested paths must be no more than δ2∗n
where n is 544, the number of points in the trajectory. The
map giving the layout of the table and bowls is 500x800
pixels, and we begin with δ = 5 pixels. We constrain the
spoon trajectory to match the start and end locations closely
by multiplying the start and end-point square errors by 100
before including those errors in the constraint sum.

Fig. 3 shows the result of running PSPS in the 2D serving
simulation. The training trajectory (here trained by drawing
with a mouse on the image) is shown as a dotted black line.
The simulated robotic spoon first tries a similar trajectory
using PSPS and δ = 5 pixels. Since that trajectory gets
marked as successful by the teacher, we plot it in green
in Fig. 3. Since that trajectory was successful, the learning
agent then increases δ and iterates, following PSPS. We
plot the tested trajectories in Fig. 3, with green showing
successful trajectories and red showing failures. After six

learning iterations, the best trajectory is plotted in blue.
From this experiment we observe that this algorithm can

indeed optimize over the training trajectory while satisfying
the trajectory constraints without the additional necessity of
adding waypoint constraints along the path of the trajectory.
For this example case, we find that it is not critical for the
PSPS algorithm to receive information about the timing of
failures in order to nevertheless find an improved trajectory
over the training trajectory.

Fig. 3: Spoon trajectories attempted for this task. Red in-
dicates the human teacher marked that attempt as a failure,
green indicates success. The learned trajectory after six iter-
ations is in blue. The black dotted line is the demonstration.

C. Pepper Robot Rice Serving Task Setup

We also explore the usefulness of this algorithm on a real
robot for a realistic robotic-feeding-related task. We use the
Pepper robot from SoftBank/Aldebaran Robotics and attach
a spoon to its left hand, The joint configuration of Pepper is
shown in Fig. 4.

Fig. 4: The arrangement of joints defining the joint space of
the left arm of Pepper, courtesy of Aldebaran Robotics [1]



We task Pepper with scooping up rice from a blue con-
tainer and dropping the scoop of rice in a target bowl. For this
task, we assume that there is a separate process that ensures
that there is rice ready to be scooped. Future work may
include learning preparatory scraping motions with the spoon
to position the rice so that it can be easily scooped, and may
include incorporating vision to find the rice, stochasticity,
or other modifications to ensure that the robot continues to
find rice as the bowl is emptied. When vision is incorporated
in future work, we hope to experiment with augmenting the
learning algorithm to detect the type of food and to learn
different trajectories for different types of food. Additionally,
we hope to do user studies on the usefulness of the feeding
trajectories. Before PSPS is deployed in a user study, safety
features to detect anomalies and shut off the robot to prevent
injury (like those presented in [12]) should be included. For
now, for this task, our robot runs blind (no visual input) and
we reset the bowl to be equally full of rice between each
attempt so that repeated scoops of rice from the same part
of the bowl are equally successful.

We kinesthetically demonstrate a single serving trajectory
for the robot that travels from the starting position to the bowl
with rice in it, scoops up some rice, and deposits the rice in
the target bowl. We weigh the amount of rice deposited in the
target bowl after execution, and the trajectory is considered
to be a failure by the teacher if the test trajectory deposits less
than 50 percent of the rice that was deposited in the bowl
by the training trajectory. In our experiment, the training
trajectory deposited 29.8 grams of rice onto the target bowl,
so whenever the robot asked us to judge a trajectory, we
deemed the trajectory a failure if it deposited less than 14.9
grams of rice in the target bowl. Fig. 1a shows the Pepper
robot being taught a sample serving trajectory kinesthetically
and Fig. 1b shows the Pepper robot learning improvements
to the training trajectory.

We use the same cost/constraint pair that we used in the 2D
simulation, with the cost function minimizing the roughness
(sum of squared second derivative) of the trajectory, and
the distance between two trajectories being measured by the
square root of the average square distance between them. We
measure both the roughness of trajectories and the distance
between trajectories in the joint space of the robotic arm.
We use the left arm of the Pepper robot, and the joint
configuration is displayed in Fig. 4.

D. Pepper Robot Rice Serving Task Results

We initialize δ to 0.1 radians, after confirming in a
simulated robotic environment that that would not lead to
dangerous robotic trajectories. After six iterations of the
PSPS algorithm, the robot had bounded δ to between 0.15
and 0.15625 radians. A plot of the amount of rice deposited
in the destination bowl as a function of the δ value used in
trajectory calculation is given in Fig. 5.

From this plot, we find that the geometric search for the
correct δ during the PSPS algorithm is effective. We find that
for this example domain, the data follow the expected trend
that trajectories that are above a certain difference from the

Fig. 5: The weight of rice transferred to the target bowl at
each learning step in the PSPS algorithm, parameterized by
the distance constraint parameter δ. Red points are those
marked by the teacher as failures. Green points succeeded.
Orange points show tests that were run outside of the PSPS
algorithm to confirm that the PSPS algorithm had found the
correct threshold δ value of 0.15 radians (vertical line)

training trajectory will tend to fail to satisfy the teacher’s
task constraints.

To compute how much PSPS was able to optimize the
trained trajectory, we compute, using finite differences, the
total sum of squared second derivatives (the cost func-
tion) for the training trajectory and the solution found by
PSPS. The training trajectory had a total cost of 9.78
radians/second2. PSPS’s learned trajectory had a total cost
of 0.461 radians/second2, showing a marked improvement
over the cost function. To visualize the improvement of the
PSPS algorithm’s result over the roughness cost, we plot the
learned (δ = 0.15) trajectory for each joint in Fig. 6. We see
from Fig. 6 that the PSPS algorithm has indeed been able
to improve the smoothness of the joint trajectories, while, as
noted in Fig. 5, still satisfying the task constraints.

From Fig. 6, not only do we see confirmation that the
PSPS algorithm is able to smooth out the trajectory, but
we also see evidence for why that is the case. We hypothe-
sized that a robot could improve on a kinesthetically taught
trajectory if the teacher were insufficiently coordinated to
move the joints simultaneously along the desired trajectories.
The regions of roughly constant value in various joints in
Fig. 6 suggest the difficulty in manipulating a high-DOF
robot kinesthetically. In particular, they show how generally
only a few joints can be easily controlled at a time by
someone physically moving the robot to teach it a trajectory,
and that frictional forces will tend to keep joints not explicitly
manipulated at a constant value. PSPS allows the robot to
smooth out the times when a joint is active into regions where
the joint was not actively manipulated.



We also note that joint LElbowYaw (red line) was hardly
moved during kinesthetic training, and that our experiment
in PSPS also kept that joint fixed. The fact that PSPS
maintained the constancy of that joint is related to the fact
that the cost function we used for this experiment was
defined in joint space. This suggests future work where we
experiment with either more complicated cost functions or
with cost functions defined in configuration space, as that
may enable the robot to improve trajectories by manipulating
joints that had been held constant.

Fig. 6: A comparison of the demonstration joint trajectories
(dotted) and the learned joint trajectories (solid lines). Pep-
per’s joints are defined in Fig. 4. General descriptions of
motion components are given at the bottom of the chart

VI. CONCLUSION

In this paper we presented the Parameterized Similar Path
Search algorithm, a novel approach to improve kinesthetic
trajectory learning for the robotic feeding domain, in which
the robot iteratively improves the trajectory demonstrated
by the caretaker over a known cost function and requests
evaluations from the caretaker to check compliance with
unknown task constraints.

We analyzed the performance of PSPS in a two-
dimensional simulation as well as on a real Pepper robot
performing a rice serving task. We found that the PSPS
algorithm is able to successfully improve the training tra-
jectory based purely on whether the tested paths satisfy the
caretaker’s task constraints, even without receiving feedback
from the caretaker on the specific times failing trajectories
violated task constraints.

The PSPS algorithm, while useful independently, also sug-
gests future avenues of research in which results from several
runs of the PSPS algorithm could then be fed into learning-
from-demonstration algorithms in order to generalize these
lower cost trajectories onto new environments.
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