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For robots to perform intricate manipulation skills, like picking up a slippery

banana slice with a fork, it is often useful to have a human demonstrate how

to perform that skill for the robot. Humans can perform the desired motion

multiple times in front of the robot, and the robot can record the demonstrated

trajectories and build a model of the demonstrations. If the robot can learn a

good model of the different ways to perform the desired motion, the human

and the robot can then work together to pick a trajectory for the robot to per-

form to solve the task. This dissertation investigates the machine learning com-

ponent of that example: ”How can a robot learn a good model of demonstrated

trajectories?” We present multiple advances in the ability of robots to model

demonstrated trajectories using latent variable models. These approaches in-

clude better model regularization to take advantage of the small size of datasets

of human demonstrations, better architectural choices to separate the timing

and spatial variations of the demonstrated trajectories, and an investigation into

how to disentangle the meaning of the variables in the latent variable model.

Theoretical justifications for the contributions are presented alongside empiri-

cal evaluations performed on a physical robot arm.
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CHAPTER 1

INTRODUCTION

1.1 Motivational Example

We begin this dissertation with a motivational example of an idealized collabo-

rative human-robot team. Imagine the human agent wants a robot arm to pick

up a slippery banana slice using a fork. Imagine further that the robot doesn’t

know how to accomplish this task. Penetration and contact friction are par-

ticularly challenging to model, so it’s unlikely the robot has already trained a

banana slice acquisition policy using reinforcement learning in simulation. To

teach the robot, the human could demonstrate the desired motion to the robot

so that the robot can learn how to perform the task, using the approach known

as “learning from demonstration.” Suppose the human demonstrates how to

pick up the banana slice multiple times, for example, by approaching the ba-

nana slice from different directions or holding the fork at different angles. In

that case, the robot can learn multiple (infinitely many) different ways to pick

up the banana slice by building a continuous model of the demonstrated mo-

tions. Given that model of ways to pick up a banana slice, the human and robot

could work together in the future to generate new trajectories to pick up banana

slices in new scenarios. The human could search the robot’s model of trajecto-

ries and pick which modeled version of the motion the robot should execute.

Fig. 1.1 shows this idealized system.

As part of this learning-from-demonstration approach, the robot learns a

generative model of trajectories to pick up banana slices. This learned model

can generate new trajectories that the robot can execute in new scenarios. In
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Figure 1.1: Idealized component diagram of a learning from demonstration ap-
proach. A sample of human demonstrations is collected. The robot learns a
generative model of how to perform the skill. The user prompts the robot to
generate some trajectory to accomplish the desired task and validates that tra-
jectory. The robot then executes the newly generated motion and accomplishes
the task.

this dissertation, we focus on how best to learn this generative model of the

demonstration data. We consider the class of “latent variable models,” gener-

ative models where the user can input real numbers to prompt the model to

generate novel trajectories. These inputs to the generative model are “latent

values.” The model has learned a “latent representation” of the demonstration

data. Different latent values given to the generative model will output differ-

ent novel trajectories. The user could use a joystick to search over that low-

dimensional space of latent values to find a trajectory they want the robot to

execute. This approach of using a latent variable model as a way for the user to

select and generate a trajectory is shown in Fig. 1.2. Our research investigates

ways to develop better latent variable models for this system.

With this motivational example of why we want to train good latent variable

models, we now briefly introduce latent variable models and explain some gen-

eral properties that we would prefer our latent variable model to have for our
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Figure 1.2: Runtime execution of the learned model. The user can use a joystick
or other input device to search the latent space and select a latent value. The
robot passes that latent value into a generative model to create a full trajectory
based on the user’s selection. The robot executes that selected trajectory.

use case.

1.2 Introduction to Latent Spaces

In the example above, the user selects a latent value to generate a desired trajec-

tory. That latent value contains information about the trajectory the user wants

the robot to execute. This section presents some high-level intuition about the

meaning of the latent values.

There are many complementary ways to understand the meaning of latent

values. Latent values contain compressed information about a specific trajec-
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The latent space is

a compressed representation[6]

a learned manifold[90]

a set of features[33]

of the data

Figure 1.3: A latent value has many purposes, and eliding minor details can be
described using any of the terminology shown in this figure.

tory, label the trajectory’s location on the manifold of demonstrated trajectories,

and model the trajectory’s features. Fig. 1.3 summarizes these multiple mean-

ings of a latent value.

These views of the latent space can be useful when designing and analyzing

our trained latent variable models. In this dissertation, we consider:

• How efficiently does our latent variable model compress the demonstra-

tion data into the lower-dimensional representation?

• How can we regularize the learned manifold to reduce overfitting to the

training data?

• What features does our model learn about the training data, and how can

we encourage the model to learn certain types of features?

While our motivational example considers trajectory data, a latent variable

model can be trained on a wide variety of data, including, for example, images.

A generative latent variable model trained on images could be used to generate

novel images, and again, the user could use a joystick or other input modality to

select a latent value and guide the model in generating certain types of images.
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1.3 Improving Latent Variable Models

There are several properties that are good for our latent variable model to have.

For example, we might want to make sure that our model is “interpretable” to

the user so that, in our idealized example, it is easier for the user to understand

the meaning of the latent values so they can search for a good latent value. Ad-

ditionally, we may want certain directions in the latent space to correspond to

particular features of the data. If each latent variable corresponds to a different

factor of variation of the data, this would be a “disentangled” model.

Though it remains an open question how best to define the “interpretability”

of a latent space, we can nevertheless provide examples to give intuition about

what we mean by “interpretability” in this dissertation. For example, consider

the latent space of images of simple pictures of cars and buildings in Fig. 1.4.

That figure shows images generated from different latent values sampled at a

uniformly spaced grid of points in a two-dimensional latent space. That latent

space is interpretable because the z1 latent variable can be easily understood

as corresponding to the position of the car, and the z2 latent variable is under-

stood to correspond to the position of the building. Because that interpretation

is simple, the model is interpretable.

A generally stronger notion of interpretability is disentanglement. In a “dis-

entangled” latent space, the independent factors of variation that generated the

latent space are separated into different latent variables. To assess whether a

model is disentangled, one needs to know what independent factors of varia-

tion generated the data. Models can fail to generate disentangled latent spaces

if they instead learn rotated latent spaces, like the one in Fig. 1.5. If the true in-
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z1

z2

Figure 1.4: Though the best definition of “interpretability” is still an open ques-
tion in research, we can think of this depiction of a latent space of images as
“interpretable” because we can easily understand what the different latent di-
rections correspond to. In particular, the z1 direction corresponds to the car’s
position, and the z2 direction corresponds to the building’s position.

dependent factors of variation that generated the data are the car position and

the building position, then the new latent space shown in Fig. 1.5 might still be

“interpretable” (because we can understand the z1 direction to correspond to

the average position of the car and building, and the z2 direction to correspond

to how far the building is to the right of the car). However, it would not be

“disentangled” if the true factors of variation were the car and building posi-

tions because the latent values correspond to a combination of the independent

factors “car position” and “building position.”

1.4 Autoencoder Variants

This dissertation considers a class of latent variable models known as autoen-

coders. Autoencoders are a latent variable model with an “encoder” that en-
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z1

z2
Rotation

Figure 1.5: If the true independent factors of variation that generated the im-
age dataset were the position of the car and the position of the building, then
this latent space would not be considered “disentangled” because the individ-
ual latent values correspond to a combination of the independent factors “car
position” and “building position.”

codes demonstration data into a latent value and a “decoder” that takes in a

latent value as its input and outputs a datapoint. The “decoder” is what we

used in the example above to map from the latent space (real numbers selected

by the user using a joystick) to generated trajectories (which can then be exe-

cuted by the robot to pick up a banana slice). The decoder is also what we used

in the example above to show how a grid of values in the latent space maps to

different generated images (images with the car and building in different loca-

tions). The encoder goes the other way, taking in a datapoint and returning a

value in the latent space. The autoencoder architecture is visualized in Fig. 1.6.

In this section, we discuss the mathematical formulation of various types of au-

toencoders.
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Figure 1.6: This diagram visualizes the latent representation as a compression
of trajectory data. It takes in the high-dimensional trajectory on the left, encodes
it as a low-dimensional representation in the middle, and then decodes it back
to a high-dimensional reconstructed trajectory on the right.

1.4.1 Autoencoder

The simplest autoencoder learns the latent space by parameterizing the encoder

f and decoder g and then estimating the parameters of those functions that

minimize the average over datapoints x of:

‖x− g(f(x))‖2
︸ ︷︷ ︸

Reconstruction Loss

In the case of linear g and f , learning an autoencoder is equivalent to per-

forming PCA [69][81]. For more complicated functions, we can learn arbitrarily

complicated latent spaces.

Fig. 1.7 visualizes what a learned autoencoder might look like using pictures

of cars and buildings. In this hypothetical example, the only thing that varies in

the image is the positions of the car and the building, so it should be possible to

learn a two-dimensional latent representation where z1 corresponds to the po-

sition of the car and z2 corresponds to the position of the building. The encoder

should take in an image of a car and a building and give the positions of the

objects in the image. The decoder takes that two-dimensional latent value and

returns an image of a car and a building in the locations corresponding to the

latent value.
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Figure 1.7: An autoencoder of images could look like this, where the input data
on the left is high-dimensional image data (with dimensionality on the order
of the number of pixels times the number of color channels), and the encoder
compresses the image into a low-dimensional latent value (here, represented as
a two-dimensional latent value). The decoder can generate a new image from
any latent value.

That example describes a very well-behaved autoencoder model with easy-

to-interpret latent values and close-to-perfect reconstruction error. However,

just having a close-to-perfect reconstruction error for an autoencoder model

does not necessarily mean it is easy to interpret. Consider an autoencoder model

that takes those same training images of cars and buildings and encodes them

into a one-dimensional latent variable z1 ∈ R (instead of our two-dimensional

latent space we had before). If we allow the autoencoder encoder and decoder

functions to be arbitrarily complicated, and allow z1 to be an arbitrarily high

precision number, then we can achieve arbitrarily good reconstruction error

even though we only use a one-dimensional latent space. If the image is an 8-

bit grayscale image of 100 by 100 pixels, then a lossless-compression example of
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such a function would be to have the encoder take the 8-bit grayscale intensities

of each pixel in the image, concatenate those values into a single 80,000-bit num-

ber and represent that as our single latent variable value z1 ∈ R. The decoder

could then be the inverse function, reading off every 8 bits from that very long

number as the corresponding pixel intensity. While this example may seem a bit

contrived, similar things can happen in neural networks, where the learned la-

tent space can be mathematically very complicated and unintuitive but can still

give near-perfect reconstruction accuracy on the training data. This problem is

addressed in the next section.

1.4.2 Variational Autoencoder (VAE)

A variational autoencoder (VAE) is an unsupervised machine learning approach

that models the main factors of variation of the data [48]. The VAE includes an

embedding function that takes in a datapoint and returns an associated lower-

dimensional latent representation, corresponding to the main factors of varia-

tion of the data while removing noise. The VAE also includes a data generation

function that takes in a latent value and generates an associated synthetic data-

point. The VAE is trained so that the data generation function creates synthetic

data that looks like the training dataset and maintains the main factors of vari-

ation in the data. Unlike a simple autoencoder, the VAE uses a cost that tries to

ensure nearby points in the latent space generate similar synthetic data points.

This cost helps prevent the VAE from learning the very complicated type of

encoder described at the end of the previous section.

Specifically, the VAE training loss contains a noisy reconstruction loss, which
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is computed by embedding a training point into the latent space, perturbing that

latent embedding according to a noise distribution, reconstructing back from

the latent space into the data space, and then computing the error between the

reconstructed data point and original training point. This procedure is visual-

ized in Fig. 1.8, where we show input data being encoded, having noise added

to the latent values, and then decoded. The noisy reconstruction loss encour-

ages the VAE to act like an autoencoder and learn an invertible encoding, while

simultaneously regularizing the encoder and decoder functions and preventing

them from learning arbitrarily complicated functions. In particular, as com-

pared to the example given at the end of the last section, this noise term (related

to the size of the “information bottleneck” [3]) gives a theoretical guarantee that

the autoencoder now cannot use arbitrarily high-precision latent-space values

to encode arbitrarily large amounts of information in the latent values.

Generating a datapoint x̃ ∈ R
n from a trained VAE consists of sampling a la-

tent variable z ∈ R
l from a standard multivariate Gaussian distribution N(0, 1)

and applying a generator function g : Rl → R
n to z to map the latent variable to

a generated g(z). If we are training on binary images, then, around this gener-

ated image, we assume a Bernoulli probability of similar images x̃ ∼ p(x̃; g(z))

with the generated image g(z) as its mean. If we are training on continuous tra-

jectory data, we assume a Gaussian probability distribution x̃ ∼ p(x̃; g(z)) with

the generated trajectory g(z) as its mean and with predefined constant spherical

variance σ2
R.

Training the VAE uses a multivariate Gaussian embedding distribution

q(z|x) for each training datapoint x with mean h(x) (using a learned embed-

ding function h : Rn → R
l) and diagonal covariance Σz|x(x) (using a learned

11
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Figure 1.8: A variational autoencoder of trajectories can function as follows,
where the input data on the left is high-dimensional trajectory data (with di-
mensionality on the order of the number of timesteps times the dimensionality
of a pose at a single timestep), and the encoder compresses the trajectory into
a low-dimensional latent value (here, represented as a two-dimensional latent
value). The decoder can generate a new trajectory from any latent value. During
training, noise is added to the latent values.

covariance function Σz|x : Rn → R
l that computes the diagonal elements). This

embedding distribution q(z|x) is motivated by a desire to approximate the pos-

terior distribution p(z|x).

The objective during training of the VAE is to maximize the Evidence Lower

BOund (ELBO), which is defined as
∑

x L(x), where, for each data point x,

L(x) = Ez∼q(z|x) [p(x; g(z))]− KL (q(z|x)‖N(0, 1)) (1.1)

The ELBO is a lower bound on log(p(x)) = log(
∫

z
p(x|z)p(z)dz), which is the

likelihood of the data point given our model. Thus, maximizing the ELBO is a

proxy for maximum likelihood estimation. The beta-VAE [35] extends the VAE

12



by multiplying the second term in the ELBO by an adjustable hyperparameter

β. If we set β to 1, we have the definition of a VAE. The first term in the ELBO is

a stochastic reconstruction loss. We sometimes refer to Σz|x as the “embedding

noise” since it adds noise to the embedding when estimating the stochastic re-

construction loss.

A standard formulation of beta-VAE is to parameterize the encoder distri-

butions as axis-aligned Gaussians q(z|x) = N (e(x), σ2(x)). Thus, the encoder

returns the expected latent value z = e(x) ∈ R
` for a trajectory, along with

the log of the (diagonal) covariance of the encoder noise distribution given by

log(σ2) ∈ R
`. The beta-VAE architecture is shown in Fig. 1.9. Its loss function is

L = LR + LKL, where

LR =
1

σ2
R

Exi,t,ε

[
‖xi(t)− f (e(xi) + ε)t‖

2] (1.2)

LKL = βExi

[
‖e(xi)‖

2 +
∑

d(σ
2
d(xi) + log(σ2

d(xi))

2

]

(1.3)

LR is a reconstruction loss encouraging the model to encode important infor-

mation about the trajectories, and LKL is a rate regularization, constraining the

total amount of information that the model can store about the trajectory [2].

For clarity, we use the subscript xi to emphasize that these losses are computed

as empirical expectations over each training trajectory. The subscript t used in

f(. . .)t indicates taking the value of the generated trajectory at timestep t (so

that it can be properly compared to xi(t), which is the desired trajectory at that

same timestep). σ2
d are the elements of σ2 and ε is drawn from a normal distri-

bution with mean 0 and diagonal covariance given by σ2. β is a regularization

hyperparameter.
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Figure 1.9: The architecture for beta-VAE. Beta-VAE takes in a trajectory x, en-
codes it into a latent distribution parameterized by z and log(σ2), and decodes
it to a trajectory x̃.

1.5 Alternate Methods

Since our motivational example only uses the generative function (and doesn’t

need the encoder function), we could also consider generative models that do

not directly learn an encoder function. One such approach is the Generative

Adversarial Network (GAN) [29]. The GAN approach learns two networks: a

decoder network that maps latent values to generated data points (like the de-

coder in a VAE) and a special discriminator network that is trained to determine

whether a datapoint is likely sampled from the training data (a real datapoint)

or was generated by the network (a synthetic datapoint). During training, la-

tent values are randomly sampled from the latent space, and corresponding

synthetic datapoints are generated using the generative function. The discrimi-

nator is then given several real and synthetic datapoints and is trained to try to

tell if each point is likely synthetic or real. The generator is trained to try to fool

the discriminator by making its generated data look as similar as possible to the

real dataset. For simplicity, we do not specifically analyze GANs in this disser-

tation, but the question of how to do a good job disentangling the latent space

also applies to GANs (see, for example, work on InfoGAN [16]), and the model

improvements we present in this work could also be applied to GANs. When

considering InfoGAN in particular, we note that one of its key contributions was

its choice to add a cost function to maximise the mutual information between

14



the observation and a subset of latent variables. The beta-VAE, which forms a

basis for our work, also contains a term to maximize the mutual information

between the latent variables and the observation, as explained in [9]. While

there may be some benefit to only maximizing the mutual information between

the observations and a subset of latent variables (as in InfoGAN), instead of

between the observations and all latent variables (as in beta-VAE), when com-

parisons have been made between InfoGAN and beta-VAE-style approaches,

InfoGAN does not tend to outperform beta-VAEs [15, 35]. It is important, how-

ever, to consider advancements in disentanglement both in the GAN literature

as well as in the VAE literature, and to note that our contributions could be used

for either architecture.

1.6 Key Contributions

This dissertation considers how to improve latent representations for robotics

applications. Our motivational example describes the usefulness of latent vari-

able models for human-robot collaboration. In our example system, a human

provides examples to a robot learner, and the robot learns a representation (a

latent variable model) of the example data. The human can then select a latent

value, and the robot’s generative model can create new outputs based on that

latent value. If the training data are trajectories, the robot could execute the new,

generated trajectory; if they are images, it could display or draw them. The key

contributions of this dissertation are:

• Curvature regularization of the latent space. Our curvature-regularized

variational autoencoder (CurvVAE) describes a method to regularize the
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learned manifold better, which helps avoid overfitting the training data.

This contribution is described in Chapter 2.

• Separating the timing and spatial latent variables of the latent space. In

our TimewarpVAE, we describe a method to separate the timing and spa-

tial features of the latent space of trajectories. This contribution is de-

scribed in Chapter 3.

• Local disentanglement of objects in latent spaces of images. In our Jaco-

bian L1 Regularized VAE (JL1VAE), we describe a method to disentangle

better factors of variation corresponding to different objects in the latent

space of images. This contribution is described in Chapter 4.

• Physical robot experiments. In addition to algorithmic contributions con-

cerning learning from demonstration, we show results of physical robot

experiments using our techniques on a Kinova Gen3 robot arm. These

physical robot experiments are described in Chapters 2 and 3.
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CHAPTER 2

CURVATURE-REGULARIZED VARIATIONAL AUTO-ENCODER

2.1 Learning Latent Representations of Small Demonstration

Datasets

In learning from demonstration, a human demonstrates some skill one or more

times, and the robot learns from those human demonstrations. Learning from

demonstration can speed up robot learning because the robot can take advan-

tage of human expertise. However, one of the challenges of learning from

demonstration is the difficulty in collecting expert data. Human demonstra-

tions take time to collect, and therefore, learning from demonstration usually

only has a small number of examples, compared to the tens of thousands of

examples present in standard machine-learning datasets. For intricate manip-

ulation skills, the learning from demonstration algorithm must be able to learn

a complicated model of the skill with many parameters. To be sample efficient,

the algorithm must include some form of inductive bias or model regulariza-

tion.

There are many forms of model regularization. In this chapter, we study

a regularization scheme based on curvature. Functions that overfit to train-

ing data will tend to have higher curvature, so we penalize the curvature of

the learned model in our regularization term. We present a novel learning al-

gorithm, the curvature-regularized variational autoencoder (CurvVAE), which

combines the modeling capabilities of a variational autoencoder (VAE) [48] with

a curvature regularization term to prevent overfitting to small datasets.
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To showcase learning from demonstration using a CurvVAE, we choose an

example that requires intricate manipulations and is difficult to simulate. The

domain we choose is the acquisition of soft and slippery food items using a fork.

In particular, our robot learns to pick up banana slices with a fork, as shown in

Fig. 1.2. This problem requires intricate manipulations since simple stabbing

motions often cause the food to slip off the fork prongs. It is difficult to sim-

ulate this problem because we lack good models of banana slices’ deformable

nature and the relevant frictional forces. Since humans can demonstrate how

to acquire banana slices with a fork, this problem is a good candidate for learn-

ing from demonstration, as described in the motivational example in Chapter 1.

However, the training dataset is relatively small since learning from demonstra-

tion on this problem requires real human examples. Our CurvVAE algorithm

can learn a good model of human trajectories in an interpretable way without

overfitting.

The contributions described in this chapter1 are:

• our novel CurvVAE algorithm to learn intricate manipulation skills from

demonstrations, including the use of a curvature regularization term to

prevent overfitting to small datasets, and

• the application of this algorithm to the manipulation of soft, spearable,

slippery food (i.e. banana slices), including evaluation on a physical

robotic system resulting in performance better than current state-of-the-

art [25].

1The work in this chapter was published as [75]
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2.2 Related Work on Learning Representations of Small Trajec-

tory Datasets

2.2.1 Trajectory Representation

In the robotics context, trajectories are often represented by key points

of splines [63, 4, 73] or by parameters of dynamic movement primitives

(DMPs) [73, 62, 72, 22]. While it is easy to time-warp and change the goal po-

sition of DMPs, the full set of parameters in both DMPs and splines is gen-

erally too large to be conveniently modified by hand for trajectories of robots

with multiple joints. By contrast, our method learns an intuitive, very low-

dimensional representation of trajectories with human interpretability in mind.

Our architecture is flexible. We could have used the parameters of splines or

DMPs as the input to our CurvVAE. Such an approach would be similar to [62],

which uses the DMP parameters as the input to principal component analysis

(PCA) to learn the natural variation of the data. CurvVAE discourages cur-

vature but does not force exact linearity like PCA does, so our model is more

flexible and makes fewer linearity assumptions than the approach presented

in [62].

Some authors have trained task-specific representations, which are func-

tions from task variables, like the height of a known obstacle or the location

of a dartboard target, to DMP parameters [62, 22]. However, this type of task-

parameterized DMP is a supervised problem where the desired representation,

namely the task variable, is known a priori. Our method is based on the unsu-

pervised learning of the representation of trajectories.
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2.2.2 Curvature Regularization

Considering models with regularization terms related to curvature, we note im-

portant differences between our work and previous work. In [64], a method is

proposed to regularize the Hessian (multivariate second derivative) and equate

that regularization with the regularization of a function’s “curvature profile.”

However, the extrinsic curvature of a manifold and the Hessian are not equiv-

alent. Scaling the input space can significantly reduce the Hessian without af-

fecting the extrinsic curvature of the output manifold. We want our curvature

regularization term to penalize the curvature of the learned manifold, not to

encourage a particular scaling of the latent space. The author is not aware of

previous work that penalizes the extrinsic curvature of the learned manifold of

a VAE.

2.3 Curvature-Regularized VAE

2.3.1 Curvature-Regularized VAE Formulation

VAEs and other neural-network-based machine learning algorithms generally

require large datasets. In cases of limited data, models can benefit from regu-

larization. Model regularization helps prevent overfitting the data at the cost

of adding inductive bias. However, inductive bias can have benefits, including

making the generative model more human-understandable and disentangling

latent factors of variation [55]. In this chapter, we explore the use of curvature

regularization to improve the sample efficiency of VAEs.
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g
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R

Figure 2.1: After mapping a random point and line through g, we compute the
radius R of the best-fit tangent circle to the resulting curve. Our regularization
cost is 1

R2 .

To regularize our model, we penalize the extrinsic curvature of the mani-

fold learned by the generative function. Explicitly, we penalize the square of

the reciprocal of the radius of curvature of curves in the learned manifold. The

curves are selected by taking random lines through a point in the latent space

and mapping them through the function g onto the curved output manifold

embedded in the data space, as shown in Fig. 2.1. We average the associated ex-

trinsic curvatures for different randomly sampled points and lines to estimate

the overall manifold’s curvature. Regularizing the curvature reduces the com-

plexity of the learned model and encourages simpler functions. Additionally,

this regularization term encourages interpretable latent variables in the model

since it explicitly causes the model to seek out a generator function for which

linear changes to the latent space lead to closer-to-linear changes in the output.

For a generator function as g, we use finite differences to estimate the curva-

ture penalty as:
(

g(z+h)−g(z)
‖g(z+h)−g(z)‖+ε

− g(z)−g(z−h)
‖g(z)−g(z−h)‖+ε

‖g(z + h)− g(z)‖+ ε

)2

where z is randomly sampled from the latent space, h is randomly sampled

from a spherical shell with small radius, and ε is a small constant (ε =1e-10)

to avoid divide-by-zero errors. Since h is randomly sampled from a spherical
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shell, replacing h with −h in the definition above leads to an equivalent cur-

vature estimate. Though the experiments presented here did not include this

modification, there may be an additional benefit to instead using the average

of ‖g(z + h) − g(z)‖ and ‖g(z) − g(z − h)‖ in the denominator, to reduce the

noise of this curvature estimate further. This cost is scaled by a hyperparam-

eter γ. We call the beta-VAE architecture with this curvature regularization a

curvature-regularized variational autoencoder (CurvVAE). The full CurvVAE

training loss is thus the sum over each training data point x of:

‖x− g(z)‖2 + β
‖f(x)‖2 +

∑

d(σ
2
d(x) + log(σ2

d(x))

2

+γ

(
g(z+h)−g(z)

‖g(z+h)−g(z)‖+ε
− g(z)−g(z−h)

‖g(z)−g(z−h)‖+ε

‖g(z + h)− g(z)‖+ ε

)2

where z = f(x) + ε, h is randomly sampled from a spherical shell with small

radius, g is the generator function, f is the embedding function, σ2
d(x) is the

variance of our embedding noise in the d’th dimension, ε is sampled from an

axis-aligned, multivariate normal distribution with variance in each dimension

defined by σ2
d(x), and ε is a small constant to avoid divide-by-zero errors.

2.3.2 CurvVAE Example on Fork Poses

To visualize the effect of the curvature regularization term in the CurvVAE loss,

consider a sample dataset of fork poses. These poses are the combined 9,920

poses in the fork trajectories described in Section 2.4.1. Each fork pose has

three spatial dimensions and four quaternion dimensions and is expressed as

a vector of dimension 7. We expect that the sampled fork poses can be well-

approximated by a lower-dimensional manifold reflecting the largest factors of

variation in the pose dataset.
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Figure 2.2: Beta-VAE is not able to attain as good a test error as our CurvVAE
model. Our CurvVAE also outperforms PCA.

Two hundred randomly sampled poses are used as a very small training

dataset, and the rest are the test set. Thirteen different β values are used for

beta-VAE and 16 different γ values are used for CurvVAE (holding β at 1e-5).

All models use three latent dimensions. For each hyperparameter set, we train

ten different models at three different learning rates for a total of 390 different

beta-VAE models and 480 different CurvVAE models.

After training each model, the root mean squared error on the training and

test sets is plotted. These results are shown in Fig. 2.2, along with the results for

PCA models on zero through three dimensions. No value of β for the beta-VAE

can achieve as low a test error as the optimal CurvVAE. Although CurvVAE

regularizes to encourage a more linear model, it does not require a linear model,

so CurvVAE can achieve a lower test error than PCA.
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2.4 CurvVAE Machine Learning Methods

Since CurvVAE allows us to train a VAE on a relatively small dataset, we can

use a CurvVAE for robotic learning from demonstration in cases where human

demonstration data is limited. As an example, we learn a generative model

of human fork trajectories in acquiring food. We then show that the learned

motions have interpretable latent spaces and lead to effective trajectories when

run on a physical robot arm.

2.4.1 Human-Demonstrated Trajectories and Data Processing

We use recordings of human participants picking up banana slices with a fork as

our training demonstrations [8]. That fork trajectory dataset contains detailed

fork poses (both positions and orientations) for real food acquisition and deliv-

ery trajectories in a pretend assistive feeding environment. In the recordings,

participants move a fork to a plate, pick up a banana slice with the fork, and

then pretend to feed it to a mannequin.

For this work, we just want to model the part of the trajectory where the

user is picking up the food, so we extract the individual banana slice acquisi-

tion components from the longer demonstration trajectories. However, to learn

a continuous model of the trajectory styles, we remove trajectories that are cat-

egorically different from others, including those with outlier fork orientations.

For the same reason, trajectory sequences from what appears to be a left-handed

participant and those in which the force-torque sensor on the fork doesn’t de-

tect food impact were removed. Trajectories were truncated to start at most one
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Figure 2.3: Example fork tip height over time in cleaned training data

centimeter above food impact and to end at most four centimeters above the

plate to focus the data on the manipulation strategy used to pick up the food

and bring it to a stable fork position. After data pre-processing, the dataset has

155 banana acquisition examples.

Each trajectory sequence is linearly retimed to start at time zero and last one

arbitrary time unit. Additionally, each trajectory is translated so that the maxi-

mal force recording from the trajectory occurs at the X/Y origin, and the lowest

height recorded during the trajectory occurs at Z=0. These two steps align trajec-

tories, and trajectories can be again translated or retimed during replay. Fig. 2.3

shows the resulting fork tip height over scaled time after this alignment process.

We mean-center the poses and then multiply all the positions by a scaling factor

of 5.6 (computed to make the largest variance in the X, Y, or Z direction across

the whole dataset equal to one) and multiply all the quaternion orientations by

0.90 (computed so that rotations around the fork tip which move the handle one

centimeter are penalized roughly the same amount as translations which move

the fork tip one centimeter). When the model is applied and poses are gener-
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ated for the robot to execute, these centering and scaling transformations are

inverted.

2.4.2 Neural Network Architecture for Trajectories

Our trajectory generator function g takes as input a three-dimensional latent

value and an additional time parameter. It outputs a pose for that trajectory at

that associated time. The pose output by the model is represented as a vector

of length seven (three position values and four quaternion values). The gen-

erator is a neural network with a single hidden layer of a thousand nodes and

uses rectified linear units as its nonlinearities. A shallow but wide architecture

is a simple architecture for learning continuous functions. This architecture can

generate a full pose trajectory for the fork by sweeping the time parameter be-

tween zero and one.

The embedding function f has a shared hidden layer with a thousand nodes

and two linear heads attached, one to predict the mean embedding z, and one

to predict the log variance of the embedding ln(σ2), again using rectified lin-

ear units for nonlinearities. We follow the standard assumption of axis-aligned

Gaussian embeddings so that z and ln(σ2) are both three-dimensional vectors

for a three-dimensional embedding latent space.

During training, paired poses and their associated timestamps (xa, ta) and

(xb, tb) are randomly pulled from a single training trajectory. xa and xb are seven-

dimensional (position and quaternion) vectors; ta and tb are their respective

scalar timestamps. We embed (xa, ta) using our embedding function f to get

a three-dimensional latent embedding za and a log-variance estimate ln(σ2
a). We
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add Gaussian noise to the mean estimate following the distribution defined by

σ2
a = exp(ln(σ2

a)) to get the noisy embedding z̃a. This noisy embedding should

be an approximate latent representation of the entire trajectory associated with

(xa, ta), from which (xb, tb) was also drawn. We now pair this embedding with

timestamp tb and use the generator function g to compute a reconstructed pose

for (z̃a, tb) with the intent that it be a good estimate of xb. The reconstructed

pose is denoted by x̃b = g(z̃a, tb). The squared error between x̃b and xb is our

reconstruction loss. This training architecture is shown in Fig. 2.4.

Even though the generator function g is now additionally parameterized by

time, the curvature loss calculations only include perturbations of the latent

value, keeping the randomly sampled time parameter constant within each cur-

vature loss calculation. The curvature of the individual trajectories over time

is not penalized; the penalty is only applied to how trajectories change as the

latent value is varied.

2.4.3 Training Hyperparameters

We trained a CurvVAE model using the above model architecture on training

data of forks picking up banana slices. We chose hyperparameters based on

the tradeoff between latent space interpretability and reconstruction accuracy.

Lower β ensures good reconstruction accuracy, but too small a β winds up em-

bedding the latent points very far from each other in the latent space. For our

training dataset, β = 0.001 was a good compromise between these goals. In-

creasing γ leads to latent traversals that are closer to linear in the output space at

the cost of lower reconstruction accuracy. For our training dataset, γ = 0.001 led
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Figure 2.4: During training, a pose xa ∈ R
7 from a trajectory is concatenated

with its associated timestep ta and encoded into a distribution parameterized
by za and ln(σa)

2 by means of a neural network with a single hidden layer and
with two heads (one for za and one for ln(σ2

a)). A sample is taken from that
encoded distribution to give a noisy encoding z̃a ∈ R

3, which represents a la-
tent representation of the full trajectory. That latent is concatenated with a new
timestep tb and passed through the decoder to give a reconstruction estimate x̃b
of the actual pose xb of the trajectory at timestep tb.

to interpretable models that still had good reconstruction accuracy. We trained

for 3,000 batches of 256 pairs of poses randomly sampled from trajectories.

2.4.4 Model Interpretability

The CurvVAE learns an intuitive latent space of trajectories. Changing the latent

value leads to interpretable changes to the starting pose of the fork, correspond-

ing to rotations of the fork around different axes. Fig. 2.5 shows the change in

fork starting pose as we vary the three-dimensional latent value along differ-

ent dimensions. The first latent value corresponds to the rotation of the fork’s

starting pose around the vertical axis. The second latent value corresponds to

28



Latent 1

Latent 2

Latent 3

Figure 2.5: Fork starting poses for the CurvVAE trajectory. Each latent direction
rotates the fork along a different axis.

tipping the handle away from or toward the viewer. The third latent value cor-

responds to tipping the handle to the left/right.

2.5 CurvVAE Physical Robot Experiments

2.5.1 The Robot Arm

Experiments are performed on a 7-DOF Kinova Gen3 Arm [49] with a two-

fingered Robotiq gripper (85mm stroke width) [80]. A metal fork is held at a

calibrated location and orientation in the gripper. We run a 500Hz control loop

on an Intel Core i7 CPU running a real-time version of Ubuntu to send effort

commands to the arm. The control computer converts high-level desired joint-

position commands to low-level effort commands to send to the arm using PID

control.
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2.5.2 Trajectory-Following Implementation

The target trajectory is encoded as 64 waypoint poses to be executed in 6.4 sec-

onds. We use a Jacobian-based controller to estimate the joint changes required

to move the fork-tip held in the robot end-effector from a starting pose through

the desired waypoints. These joint changes are scaled as necessary to ensure

the robot doesn’t move unreasonably quickly, and together, they form a set of

desired joint angle waypoints. These desired joint angles are sent to the control

computer alongside a desired time-to-goal for each value of desired joint angles.

The real-time control computer computes intermediate waypoint joint positions

to move each joint linearly from its current actual angle to arrive at the next de-

sired angle at the desired time. PID control is then used to send computed effort

commands to the robot arm at 500Hz to follow the intermediate waypoint joint

positions.

2.5.3 CurvVAE Latent Value Selection

The latent values of the trained CurvVAE are interpretable, as seen in Fig. 2.5,

and correspond primarily to different starting orientations of the fork. We

choose latent values that approach the banana from approximately the same

cardinal direction and which ensure that no fork prong is tipped closer to the

table than the other prongs. Under those constraints, latent values are chosen

that tilt the fork away from the banana slice at various angles. In particular, we

choose latent values that tilt the fork so that the prongs start 30◦, 45◦, and 60◦ off

of vertical. These trajectories are visualized in Fig. 2.6.
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2.5.4 Baseline Trajectories

We compare the food acquisition efficiency of these learned CurvVAE trajecto-

ries to baseline trajectories inspired by [25]. The state-of-the-art trajectory pre-

sented in that work holds the fork handle at a 45◦ angle and moves the fork

along a 45◦ line to skewer the food. The fork prongs are at a 75◦ angle during

motion, so we label this trajectory the 75◦ baseline. We additionally test holding

the fork prongs at a 45◦ angle while moving them at a 45◦ angle to skewer the ba-

nana slice. After the banana is skewered for both baseline trajectories, the fork

attempts to lift it vertically (without changing the orientation of the prongs).

We choose these as our baselines because they are easy to code, intuitive, and

include the current state of the art of [25].

A beta-VAE model was also trained on the same dataset (β = 0.001) and a

PCA model, both with the same latent dimension of three. Again, latent values

were chosen for these models to give similar starting angles as those chosen for

the CurvVAE model.

2.5.5 Data Collection

Food acquisition success on banana slices is tested in a controlled laboratory

setting. Bananas are sliced to be ∼1.5cm thick and placed on a marked location

on a plate in a known position relative to the robot base. For each banana slice,

we test multiple strategies. By testing multiple different strategies on each slice

in a randomized order, we control for variations in banana slices. Each strategy

is tested 25 different times, and we count the number of times the food was

successfully acquired, where success requires staying on the fork for at least
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Figure 2.6: Still images from CurvVAE trajectories. Trajectories were generated
from the same model using different latent values.

five seconds. Since the type of plate can affect food acquisition performance,

the entire experiment was run twice, once using a paper plate and once using

a ceramic plate. The ceramic plate had less surface friction, making for a more

challenging environment.

2.6 Results and Discussion on Learning Representations of

Small Trajectory Datasets

The results of the food efficiency acquisition experiments are presented in

Fig. 2.7. Like [25], we see that soft food acquisition can be challenging for the

hardcoded trajectories because banana slices are slippery and can slide off the

prongs of the fork during lifting. However, the trajectories learned from demon-

stration are consistently better at picking up banana slices. The difference is
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Figure 2.7: Banana slice acquisition success rates.

not statistically significant when the experiment is conducted on a paper plate.

However, when the experiment is conducted on a ceramic plate, which has less

friction and allows the banana to slide more easily, the performance increase is

much larger and is statistically significant (p < 0.05).

While this manipulation task suggests that CurvVAE may outperform beta-

VAE, in general, this manipulation task is not sensitive enough to differentiate

CurvVAE performance from other learning from demonstration strategies.

This chapter showed how robots can learn an intuitive latent space from

small datasets using a CurvVAE. We applied the CurvVAE to learning from

demonstration and showed that the learned latent space is low-dimensional

enough to be meaningfully understood and could, therefore, be directly con-

trolled. We further experimentally validated that the CurvVAE model’s gener-

ated trajectories have a better success rate than hardcoded baseline trajectories,

including the state-of-the-art 75◦ baseline presented in [25].
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CHAPTER 3

TIMEWARP VARIATIONAL AUTO-ENCODER

3.1 Temporal and Spatial Variations of Trajectories

Continuous trajectories are inherently infinite-dimensional objects that can vary

in complex ways in both time and space. However, in many practical situations,

their intrinsic sources of variability can be well-approximated by mapping onto

a low-dimensional manifold with points labeled by their latent values. When

a human demonstrates trajectories for a robot, it is useful for the robot to learn

to model the most expressive latent factors controlling the functionally relevant

parts of the demonstration trajectories. For many types of demonstrations, such

as in gesture control or quasistatic manipulation, it is highly advantageous to ex-

plicitly separate the exact timing of the trajectory from the spatial latent factors.

This chapter introduces a method that learns such a representation to generate

novel fast trajectories for a robot arm, as shown in Fig 3.1.

Consider the problem of trying to average two samples from a handwriting

dataset generated by humans drawing the letter “A” in the air [12]. If we scale

two trajectories linearly in time so that their timestamps go from 0 to 1, and

then average the two trajectories at each timestep, the resulting average does

not maintain the style of the “A”s. This is because the average is taken between

parts of the two trajectories that do not naturally correspond. An example of

this averaging, with lines showing examples of averaged points, is shown in

Fig. 3.2a. Scaling trajectories to have constant speed also doesn’t solve the issue

(Fig. 3.2b). A common approach like dynamic time warping (DTW) [82] can lead
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t = 0.0s t = 0.3s t = 1.1s t = 1.5s t = 1.7s

Figure 3.1: TimewarpVAE learns a low-dimensional latent representation of
complex trajectories that explicitly factorizes timing and spatial styles. The Ki-
nova Gen3 robot arm can draw various versions of the letter “A” more quickly
by speeding up or slowing down different parts of the trajectory to obey dy-
namical mechanical constraints. The resulting end-effector path is overlaid on
the images.

to unintuitive results. When averaging these same two trajectories, DTW only

takes in information about these two trajectories and does not use contextual

information about other examples of the letter “A” to better understand how to

align the timings of these trajectories.1 In Fig. 3.2c, we use the dtw package [27]

to align the trajectories before averaging them at corresponding timesteps. We

see the resulting trajectory is spatially close to the input trajectories, but it again

does not maintain the style of the “A”s.

We want to build a representation of trajectories that has a separation of

timing and spatial latent variables, so that spatial latent interpolations gener-

ate trajectories that nicely spatially interpolate trajectories. Our TimewarpVAE

takes the time alignment benefits of DTW and uses them in a manifold learning

algorithm to align the timings of similar trajectories. Our results are shown in

Fig. 3.2e. The Rate Invariant Autoencoder of [51] is similar in also learning a la-

tent space that separates timing and spatial factors of variation, with the spatial

1We use the terms “time-warping,” “time alignment,” and “registration” interchangeably.
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(a) Uniform time scaling
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(b) Constant speed scaling
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(c) DTW time alignment
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(d) Rate Invariant AE
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(e) TimewarpVAE (ours)

Figure 3.2: Interpolations in latent space between canonical trajectories using
various models. For Rate Invariant Autoencoder and TimewarpVAE, we use a
sixteen dimensional spatial latent space and the interpolation is constructed by
decoding the average of the spatial latent embeddings. The resulting average
trajectory is plotted alongside the reconstructions of the original two trajecto-
ries. The Rate Invariant Autoencoder can learn to ignore parts of the canonical
trajectory during training, leading to the jittering seen at the beginning and end
of the canonical trajectory.

interpolations shown in Fig. 3.2d. Our TimewarpVAE approach has three main

contributions2 that make it better suited for generating robot trajectories than a

Rate Invariant AE. The first is the parameterization of the generated trajectory

as an arbitrarily complicated neural network function of time rather than bas-

ing the trajectory calculation on piecewise linear functions with a pre-specified

number of knots. The second is that our approach includes a regularization

term, so the model is correctly penalized for extreme time warps. Finally, be-

cause of our time-warping regularization term, a robot can optimize the trajec-

tory timing to account for its own joint torque and speed limitations, speeding

up its execution of learned trajectories while regularizing to stay close to train-

ing timings. An example optimized trajectory is shown in Fig 3.1.

2The work done in this chapter was published in [77]
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3.2 Related Work on Time-Warping During Representation

Learning

Learning a latent space of trajectories that combines the timing and spatial pa-

rameters together into a single latent space appears in [88], [17], and [59], among

others. TimewarpVAE, like the Rate Invariant Autoencoder of [51], instead sep-

arates the timing and spatial latent variables, giving a more efficient spatial

model. Our work is an improvement over the Rate Invariant AE in several im-

portant ways. First, our work is not constrained to learning a piecewise linear

trajectory. Second, we include a proper regularization term to penalize the time

warping so it does not ignore parts of the template trajectory. Comparing our

results to the Rate Invariant AE shows that this timing regularization is impor-

tant to combat a degeneracy in the choice of timing of the canonical trajectory.

We explain this degeneracy in Section 3.4.1 and explain how it also applies to

the work of [98] in the Appendix.

Functional Data Analysis [96] involves the study of how to interpret time-

series data, often requiring the registration of data with different timings. The

idea of warping the timings of paths appears in, for example, DTW [82] and the

Fréchet distance [26]. The Fréchet distance in particular, has good theoretical

properties when comparing robot trajectories [39]. One possible issue with the

Fréchet distance, however, is that it uses a max operator, returning the distance

between the least-well-matched timesteps after optimally aligning the two tra-

jectories. We feel that this might be a problem for our deep learning approach

because it throws away gradient information about how well the other parts of
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the trajectories are aligned, so for our approach, we instead consider the dis-

tances between all parts of aligned trajectories rather than just looking at the

worst-aligned part of aligned trajectories. It would be interesting to consider

some version of the Fréchet distance in future work. This could likely be done

with slight modifications to our approach by penalizing only the largest dis-

tance between aligned trajectories rather than the distance between all aligned

timesteps, as we do. Our work is also related to continuous dynamic time warp-

ing [52], which we refine for the manifold-learning setting. The registration and

averaging of trajectories is performed in [74], [85], and [99]. Rather than just

learning a single average trajectory, we model the full manifold of trajectories.

Time-warping is used in [10] to learn “discriminative prototypes” of trajectories,

but not a manifold representation of all the trajectories. A linear model to give

a learned representation of registered trajectories is generated in [50], and our

work can be considered an expansion of that work, using manifold learning to

allow for nonlinear spatial variations of registered trajectories.

Time-warping has previously been combined with manifold learning to gen-

erate representations of individual frames of a trajectory. For example, [101],

[92], and [19] align trajectories and learn representations of individual frames

contained in the trajectories. Connectionist Temporal Classification (CTC) can

also be viewed as an algorithm for learning a labeling of frames of a trajectory

while ignoring timing variations [30]. Instead, our approach focuses on learning

a latent vector representation that captures information about the entire trajec-

tory.

Trajectory data can be parameterized in many ways when presented to the
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Figure 3.3: The architecture for TimewarpVAE. TimewarpVAE takes in a full
trajectory z and a timestamp t and reconstructs the position p of the trajectory at
that timestamp. TimewarpVAE separately encodes the timing of the trajectory
into Θ and encodes the spatial information into a latent distribution parameter-
ized by z and log(σ2).

learning algorithm. For example, the trajectory could be parameterized as a

dynamic movement primitive (DMP) [41] before learning a (linear) model of

DMP parameters, as is done in [62]. A DMP can also be used to learn a repre-

sentation of states [13] and to model trajectories; for example, the timing can be

slowed during execution to allow a robot to “catch up” and correct for execution

errors [83]. However, that work does not model timing variations during train-

ing. We find the Parametric DMP model is not as accurate as TimewarpVAE.

TimewarpVAE accounts for timing variations during training, enabling its la-

tent variable to concentrate its modeling capacity on spatial variations of trajec-

tories.

3.3 TimewarpVAE Technical Approach

A standard approach to learning a manifold for trajectories (see, for example,

the method proposed by [11]) is to map each trajectory to a learned representa-
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tion that includes information about timing and spatial variations. This type of

representation learning can be performed by a beta-VAE [35]. TimewarpVAE is

based on beta-VAE, with the goal of separating latent variables for spatial and

timing factors to make the models more useful for robot execution. To separate

the spatial and temporal variations in trajectories, TimewarpVAE contains two

modules not present in beta-VAE: a temporal encoder and a time-warper. The

decoder now takes in information from both the spatial encoder and the time-

warper. Fig. 3.3 shows the architecture of TimewarpVAE. It takes in two inputs:

the training trajectory x and a desired reconstruction time t. Like in beta-VAE,

the spatial encoder maps the trajectory x to its latent value distribution param-

eterized by z and log(σ2). The temporal encoder computes time-warping pa-

rameters Θ, and the time-warper (defined by the parameters Θ) now acts on t

to warp it to a “canonical time” s. The decoder takes the canonical time s and

the spatial latent vector and returns the position of the canonical trajectory for

that latent vector at the canonical time s. These modules are further explained

in Section 3.4. These functions are jointly trained so the decoded position is a

good reconstruction of the position of trajectory x at timestep t, while at the

same time minimizing the information that we allow the autoencoder to store

about the trajectory.

Specifically, the minimization objective for TimewarpVAE, denoted L, is the

sum of the reconstruction cost LR, beta-VAE’s KL divergence loss LKL, and a

new time-warping regularization Lφ, which we explain further in Section 3.4.1.

L = LR + LKL + Lφ, where

LR =
1

σ2
R

Exi,t,ε





∥
∥
∥
∥
∥
xi(t)− f

(
k∑

j=1

h(xi)jψj(t), e(xi) + ε

)∥
∥
∥
∥
∥

2


 (3.1)
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LKL = βExi

[
‖e(xi)‖

2 +
∑

d(σ
2
d(xi) + log(σ2

d(xi))

2

]

(3.2)

Lφ = λExi

[

1

K

K∑

j=1

(h(xi)j − 1) log(h(xi)j)

]

(3.3)

For clarity, we again use the subscript xi to emphasize that these losses are

computed as empirical expectations over each training trajectory xi. e, σ
2 (and

its elements σ2
d), ε, and σ2

R are all defined in the same way as for beta-VAE in

Eqs. 1.2 and 1.3. f is the decoder, now taking in a canonical timestamp along

with the latent value. h is the temporal encoder, so that h(xi)j is the jth output

neuron (out of K total) of the temporal encoder applied to the ith trajectory.

The ψj are the time-warping basis functions, explained in Sec. 3.4 and defined

in Equation 3.4. β is a regularization hyperparameter for beta-VAEs. λ is a

regularization hyperparameter for our time-warping functions, which we set to

0.05 in our experiments. Since λ penalizes the time-warping in the model, a

large λ → ∞ would drive time-warping to be the identity function, and λ = 0

could allow the model to learn severe time-warps.

For training, we take a batch of 64 trajectories and compute the spatial la-

tent vector, spatial noise parameter vector, and timing latent vector for each

trajectory. A randomly sampled noise term is added to each of the 64 spatial

latent vectors according to its associated spatial noise parameter vector. A set

of new warped timesteps are computed using the temporal latent vectors. Fi-

nally, we decode the full decoded trajectory for each input trajectory by pairing

the noisy spatial latent with its associated warped timesteps and decoding re-

peatedly. This can be done efficiently by repeating each of the 64 spatial noisy

latent vectors 200 times (one for each warped timestep), pairing each repetition
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with a warped timestamp, and then passing all those pairs of latent values and

warped timestamps to the decoder in a large batch of 64× 200 = 12, 800 values

to decode into positions. Finally, we compare each reconstructed position with

the input trajecory position and backpropagate the complete loss according to

the equations above in a minibatch and backpropagate all the networks using

this loss function. In total, we train for 20,000 epochs. We explain the neural

network implementation of all of these functions in the next section.

The benefits of this algorithm are as follows: it learns a low-dimensional rep-

resentation of spatial variations in trajectories; it can be implemented as a neural

network and trained using backpropagation; and it can accommodate nonlinear

timing differences in the training trajectories. Additionally, new trajectories can

be generated using a latent value z and canonical timestamps s ranging from

0 to 1 without using the time-warper or the temporal encoder, which we do

in our empirical evaluations, calling these generated trajectories “canonical” or

“template” trajectories. These trajectories outperform baseline trajectories qual-

itatively in Fig. 3.2e and quantitatively in our results section.

3.4 TimewarpVAE Neural Network Formulation

This section explains how to write the spatial encoding function, the temporal

encoding function, the time-warping function, and the decoding function as

differentiable functions. The time-warping function is a differentiable function

with no learnable parameters since the time-warping is entirely defined by the

input parameters Θ. The other three modules have learnable parameters, which

42



we learn through backpropagation.

Architecture for the time-warper. The time-warper takes in a training times-

tamp t for a particular trajectory and maps it monotonically to a canonical times-

tamp s. φ is a piecewise linear function of t with equally spaced knots and K

linear segments. The slopes of those segments are labeled by Θj for 1 ≤ j ≤ K.

Different vector Θ ∈ R
K choices give different time-warping functions. In or-

der for Θ to yield a valid time-warping function mapping [0, 1] to [0, 1], the Θj

should be positive and average to 1. These Θ values are generated by the tem-

poral encoding function discussed in the next paragraph. Given some vector

Θ, corresponding to the slope of each segment, the time-warper φ is given by

φ(t) =
∑K

j=1 Θjψj(t) where the ψj are defined as follows and do not need to be

learned:

ψj(t) = min
{

max
{
t− (j − 1)/K, 0

}
, 1/K

}

(3.4)

A visualization of these basis functions ψj is presented in Fig. 3.4. We use the

specific parameterization of Θj described in the next paragraph to ensure that

our time-warping function is a bijection from [0, 1] to [0, 1]. Given an input t, the

time-warper is implemented by first computing the ψj(t) as a vector (with one

element for each j) and then taking the dot product of that vector with the Θj’s.

In our experiments, we set K = 50.

Neural network architecture for the temporal encoder. A neural network h :

R
n×T → R

K computes a different vector Θ for each training trajectory x. To

ensure the elements of Θ are positive and average to 1, the softmax function is

applied to the last layer of the temporal encoder, and the result is scaled by K.
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Figure 3.4: Time alignment basis functions for K = 5, for each i from 1 to 5. In
our experiments, we use K = 50

This transformation sends the values θ to Θj = Softmax (θ)jK for j from 1 to K,

ensuring that the average of the output neurons Θj is 1 as desired. By contrast,

[51] square the last layer and then normalize. The specific architecture used in

our experiments, with the shapes of the computed hidden layers, is shown in

Fig. 3.5.

Neural network architecture for the spatial encoder. Given a trajectory x

evenly sampled at T different timesteps tj between 0 and 1, the T × n matrix

of these evenly sampled positions x(tj) is written as x ∈ R
n×T . In the neural

network architecture used in our experiments, one-dimensional convolutions

are applied over the time dimension, treating the n spatial dimensions as in-

put channels. This is followed by different fully connected layers for e and for

log(σ). However, any neural network architecture, such as a Transformer [94]

or Recurrent Neural Network [36], could be used in the spatial encoder module

of a TimewarpVAE. Recurrent Neural Networks have shown some benefit for

this type of problem, as shown in [32], and should be further explored in future

work. The specific architecture used in our experiments, with the shapes of the
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Figure 3.5: The temporal encoder architecture includes a series of 1D convolu-
tional steps with kernel size 3 (convolving over the time dimension) that takes
in a trajectory with 200 timesteps and c channels. For the handwriting dataset,
c = 2, corresponding to the x and y positions. For the fork dataset, c = 7, cor-
responding to the fork pose. These convolutions generate hidden layers with
data shapes shown in this figure. The last convolution returns an output with
22 timesteps and 64 channels. This last hidden layer is then flattened and fed
through a single fully connected layer to compute the spatial latent value esti-
mate, and through a different fully connected layer with the same size to com-
pute the diagonal covariance estimate of the spatial latent value (not shown)
each of dimension ` equal to the selected latent dimension size.

computed hidden layers, is shown in Fig. 3.6.

Neural network architecture for the decoder Any architecture that takes in

a time s and a latent vector z and returns a position p could be used for the

decoder f . Our experiments use a modular decomposition of f , with f(s, z) de-

composed as the product of a matrix and a vector: f(s, z) = T(z)g(s). In this
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Figure 3.6: The spatial encoder we use in our experiments includes a series of
1D convolutional steps with kernel size 3 (convolving over the time dimension)
that take in a trajectory with 200 timesteps and c channels. For the handwriting
dataset, c = 2, corresponding to the x and y positions. For the fork dataset, c =
7, corresponding to the fork pose. These convolutions generate hidden layers
with data shapes shown in this figure. The last convolution returns an output
with 23 timesteps and 32 channels. This last hidden layer is then flattened and
fed through a single fully connected layer to compute the spatial latent value
estimate, and through a different fully connected layer with the same size to
compute the diagonal covariance estimate of the spatial latent value (not shown)
each of dimension ` equal to the selected latent dimension size.

formulation, the matrix T(z) is a function of the latent vector z, and the vector

g(s) is a function of the (retimed) timestep s. If each point in the training trajec-

tory has dimension n, and for some hyperparameter m for our architecture, the

matrix T(z) will have shape n×m, and the vector g(s) will be of length m. The

nm elements of T(z) are the (reshaped) output of a sequence of fully connected

layers taking the vector z as an input. The m elements of g(s) are computed as
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the output of a sequence of fully connected layers taking the scalar s as an input.

Because the scalar s will lie in the range [0, 1], it is useful to customize the ini-

tialization of the weights in the first hidden layer of g(s). Details of the custom

initialization are provided in the Appendix. This chosen architecture is useful

for easily creating the “NoNonlinearity” ablation experiment in Section 3.5.5.

With this architecture, if the hidden layers in T(z) are removed, then it a linear

function of z, and so then entire decoder becomes linear with respect to z, so

the generated position p will be a linear combination of possible positions at

timestep s. The specific architecture used in our experiments, with the shapes

of the computed hidden layers, is shown in Fig. 3.7.

3.4.1 Regularization of Time-Warping Function

The choice of timing for the canonical trajectories adds a degeneracy to the solu-

tion.3 Without our regularization, it is possible for other methods, like Rate In-

variant AE, to warp so severely that they can learn to ignore parts of the canoni-

cal trajectory. This is a problem if we generate robot motions from the canonical

trajectory since it can lead to jittering motions, as seen at the beginning and end

of the learned trajectory in Fig. 3.2d.

We propose a regularization penalty on the time-warper φ to choose among

the degenerate solutions. The proposed penalty is on
∫ 1

0
(φ′(t)− 1) log (φ′(t)) dt.

That regularization contains the function g(x) = (x − 1) log(x) applied to the

slope φ′(t), integrated over each point t. That function g(x) is concave-up for

3This is similar to the degeneracy noted in the Appendix for continuous dynamic time warp-
ing [52], and, as noted in the Appendix, was not properly analyzed in [98].
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Figure 3.7: The decoder architecture contains fully connected layers and matrix
multiplication. One set of fully connected layers (top) takes the spatial latent
value as input and computes a single hidden layer of size 200 and then com-
putes a (reshaped) output of size c×64, labelled T. For the handwriting dataset,
c = 2, corresponding to the x and y positions. For the fork dataset, c = 7 corre-
sponding to the fork pose. The other set of fully connected layers (bottom) takes
in the scaled time as a single input and computes two sequential hidden layers
of size 500 and then computes a vector output of size 64, labelled g. Finally, the
matrix-vector product Tg returns the computed pose p (of dimension c). This
is the generated pose for to the given spatial latent value and scaled timestep.
This process is repeated for different timesteps to generate the full generated
trajectory for a particular latent value.
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Figure 3.8: We collect trajectory recordings of the position and orientation of a
fork while it is used to pick a small piece of yarn off a plate with steep sides. Ex-
ample trajectories are presented from two angles, showing the initial orientation
of the fork and the position of the tip of the fork over time.

x > 0 and takes on a minimum at x = 1, encouraging the slope of φ to be near

1. This formulation has the symmetric property that regularizing φ(t) gives the

exact same regularization as regularizing φ−1(s). This symmetry is proven in

the Appendix. For each trajectory xi our time-warper φ is stepwise linear with

K equally-sized segments with slopes Θ1 = h(xi)1, . . . ,Θk = h(xi)K . Thus, the

regularization integral for the time-warper associated with xi is

Lφ(xi) =
1

K

K∑

j=1

(h(xi)j − 1) log(h(xi)j) (3.5)

3.5 TimewarpVAE Experiments

Experiments are performed on two datasets, one containing handwriting ges-

tures made in the air while holding a Wii remote [12], and one that we collect

ourselves, containing motions that pick up yarn off a plate with a fork, mim-

icking food acquisition. The same model architecture is used for both experi-
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ments, shown in Fig. 3.7 and with additional hyperparameter information given

in the Appendix. Additionally, during training, we perform data augmenta-

tion by randomly perturbing the timesteps used when sampling the trajectory

x, using linear interpolation to compute sampled positions. Our specific data-

augmentation implementation is described in the Appendix. This data augmen-

tation decreases training performance but greatly improves test performance, as

shown in the ablation studies in Section 3.5.5.

3.5.1 Fork Trajectory Dataset

345 fork trajectories are recorded using the Vicon tracking system shown in

Fig. 3.8a. Reflective markers are rigidly attached to a plastic fork, and the tra-

jectory of the fork is recorded using Vicon cameras. A six-centimeter length of

yarn is placed on the plate in an arbitrary location and orientation. It is then

picked up right-handed by scraping it to the left and using the side of the plate

as a static tool to push it onto the fork. Demonstrations were intentionally col-

lected with three different timings, where in some trajectories the approach to

the plate was intentionally much faster than the retreat from the plate, in some

trajectories the approach was intentionally much slower than the retreat from

the plate, and in the remaining trajectories the approach and retreat are approx-

imately the same speed. The dataset was split into 240 training trajectories and

105 test trajectories. Examples of six recorded trajectories, along with visual-

izations of the starting pose of the fork for those trajectories, are presented in

4Fork meshes in 3D trajectory plots were downloaded and modified from
https://www.turbosquid.com/3d-models/metal-fork-3d-model/362158 and are used un-
der the TurboSquid 3D Model License
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Fig. 3.8b. Trajectories are truncated to start when the fork tip passes within 10cm

of the table and to end again when the fork passes above 10cm. All trajectories

were subsampled to 200 equally-spaced time points, using linear interpolation

as needed. We express the data as the x, y, z position of the tip of the fork and the

rw, rx, ry, rz quaternion orientation of the fork, giving a dataset of dimension

n = 7 at each datapoint. The data is preprocessed to choose a consistent sign of

the quaternion representations so they are all near each other in R
4. The data is

mean-centered by subtracting the average x, y, z, rw, rx, ry, rz training values,

and the x, y, z values are divided by a normalizing factor so that their combined

variance E[x2+y2+z2] is 3 on the training set. Likewise, the rw, rx, ry, rz values

are multiplied by a scaling factor of 0.08m, (chosen as a length scale associated

with the size of the fork), before dividing by the same normalizing factor, to

bring all the dimensions into the same range.

3.5.2 Handwriting Gestures Dataset

The air-handwriting dataset collected by [12] is used for the handwriting exper-

iment. The drawn letters are projected onto xy coordinates. A training set of 125

random examples of the letter “A” is drawn from the air-handwriting dataset,

and the remaining 125 random examples of the letter “A” are the test set. All

trajectories were subsampled to 200 equally-spaced time points, using linear in-

terpolation as needed. The data are mean-centered so that the average position

over the whole training dataset is the origin, and x and y are scaled together by

the same constant so that their combined variance E[x2 + y2] is 2 on the train-

ing set. Example training trajectories of handwritten letter “A”’s are shown in
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Figure 3.9: Five example trajectories of handwritten “A”

Architecture Beta Rate Training A-RMSE Test A-RMSE

(±3σ) (±3σ)

TimewarpVAE 0.01 3.716 0.187 ± 0.003 0.233 ± 0.003

0.1 3.227 0.185 ± 0.007 0.234 ± 0.008

RateInvariantAE 0.01 4.095 0.260 ± 0.130 0.316 ± 0.188

0.1 3.280 0.285 ± 0.154 0.325 ± 0.132

beta-VAE 0.01 4.759 0.291 ± 0.005 0.343 ± 0.016

0.1 3.670 0.293 ± 0.007 0.342 ± 0.011

NoTimewarp 0.01 3.924 0.264 ± 0.007 0.360 ± 0.017

0.1 3.508 0.265 ± 0.006 0.354 ± 0.014

Table 3.1: Performance results for 3-dimensional models of fork trajectories.
Our TimewarpVAE significantly outperforms beta-VAE and the ablation of
TimewarpVAE without the time-warper.

Fig. 3.9.

3.5.3 Model Performance Measures

The performance measures include three important values: the training recon-

struction error, the test reconstruction error, and the model rate. Since we are

interested in the ability of our model to measure spatial variation of trajecto-

ries, reconstruction errors are computed by first performing symmetric DTW to

align the reconstructed trajectory to the original trajectory. We then compute the

Euclidean mean squared error between each point in the original trajectory and

every point it is paired with. After that, we calculate the average of all those

errors over all the timesteps in the original trajectory before taking the square
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Figure 3.10: The paths of the fork tip are plotted over time for TimewarpVAE
trajectories using different latent vectors. The orientation of the fork is shown
at three different timesteps in a color matching the associated path. Each latent
dimension has an interpretable effect. The first latent determines the fork’s ini-
tial y position, the second latent determines the fork’s initial x position, and the
third latent determines how the fork curves during trajectory execution.

root to compute our aligned root mean squared error (A-RMSE). In the frame-

work of Rate-Distortion theory, these errors are distortion terms. The model rate

measures the information bottleneck imposed by the model and is given by the

KL divergence term in the beta-VAE loss function. It’s important to check the

rate of the model since arbitrarily complex models can get perfect reconstruc-

tion error if they have a large enough rate [3]. However, among trained models

with similar rates, it is fair to say that the model with lower distortion is a better

model. Model rate is reported in bits.

3.5.4 Fork Model Results

Models are trained with a latent dimension of three on the fork dataset.

TimewarpVAE is compared to beta-VAE, a VAE version of Rate Invariant AE,
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and an ablation of TimewarpVAE called “NoTimewarp” that sets the time-

warping module to the identity function. The latent sweep of a TimewarpVAE

trained with β = 1 is shown in Fig. 3.10, showing its interpretable latent space.

Table 3.1 shows performance measures, where we compute and summarize five

trials for each model type for various hyperparameters β. TimewarpVAE out-

performs the baseline methods.

3.5.5 Air Handwriting Results

TimewarpVAE is compared to baseline methods trained on the same training

and test splits. All models are trained with a batch size of 64 for 20,000 epochs,

using the Adam optimizer and a learning rate of 0.001. We train each model

five times for different choices of beta, and we plot the mean and one standard

error above and below the mean. To give context to these results, we also show

results for parametric dynamic movement primitives (Parametric DMPs) [62]

and PCA results, which do not have associated rate values. TimewarpVAE sig-

nificantly outperforms Parametric DMPs, PCA, and beta-VAE, with the great-

est differences for smaller latent dimensions. TimewarpVAE shows comparable

performance to RateInvariant on training error and consistently outperforms

RateInvariant in test error.

Ablation studies were run to understand the importance of different archi-

tecture choices. The first removes the data augmentation of additional trajecto-

ries with perturbed timings. We call this ablation“NoAugment.” The second re-

moves the hidden layers in the neural network T(z). Removing the hidden lay-
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Figure 3.11: TimewarpVAE compared to beta-VAE, Parametric DMP, PCA, and
Rate Invariant AE. Especially for lower-dimensional models, TimewarpVAE
performs comparably to RateInvariant on training error and consistently out-
performs RateInvariant in test error.
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Figure 3.12: Ablation results show the data augmentation of timing noise is
important for generalization performance, the nonlinear model gives a better
fit to training data without losing generalization performance, and the time-
warper is key to TimewarpVAE’s good performance.

ers makes T(z) a linear function, meaning the function f can only learn trajecto-

ries that are a linear function of the latent variable z (but f is still nonlinear in the

time argument s). We call this ablation “NoNonlinearity”. The third removes

the time-warper and replaces it with the identity function. We call this ablation

“NoTimewarp.” Results for these ablations are plotted in Fig. 3.12. NoAug-

ment confirms the importance of data augmentation for good generalization.

NoAugment can get a slightly better fit to the training data than TimewarpVAE,

but performs poorly on test data. NoNonlinearity has comparable performance
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on the test data to TimewarpVAE, showing the strict regularization imposed by

its linearity condition is good for generalization. However, NoNonlineary has

such strong regularization that it cannot fit the training data as closely. Addi-

tionally, the model rate for NoNonlinearity is higher. By constraining our model

to be linear in the latent term, we cannot compress information as efficiently

into the latent space. Without the ability to time-align the data, NoTimewarp-

ing is not able to fit either the training or test data well. The information rate

of NoTimewarping is the same as that of TimewarpVAE, showing it does not

compress spatial information as efficiently.

When reading these results, it’s important to note that while adding more

latent dimensions is an easy way to improve the model performance, when ac-

tually using the generative model we want the latent space to be easy to search

to select a trajectory, so an actual use case would favor smaller latent spaces that

capture the important factors of variation of the dataset and don’t additionally

allocate latent dimensions to modeling small variations in the data. The choice

of the right latent space size to use would depend on the particular dataset and

use case of the learned model. Additionally, hyperparameters were chosen to

reduce holdout error. The large modeling capacity of the deep learning meth-

ods for large latent dimensions would make it very easy to do much better than

PCA on the training dataset if we wanted to, but for the small training datasets

we use, such models would overfit and do very poorly on the holdout dataset.

There is a limit to the holdout performance that can be robustly attained on a

small training dataset, based on the intrinisic noise in the data.
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3.6 Letter ‘A’ Robot Execution

We demonstrate the usefulness of our algorithm on a Kinova Gen3 robot arm.

Because of our timing regularization term, we can optimize various timing op-

tions during the replay of the trajectory, constraining the trajectory to stay close

to the demonstrated timings. This timing optimization allows the robot to con-

sider its joint torque and speed limitations and choose a timing that it can ex-

ecute the quickest under those constraints. An example is shown in Fig. 3.1.

If the robot can only scale the timing uniformly, the optimized trajectory takes

1.8 times longer to execute. Our approach gives the robot the flexibility to slow

down some parts of the trajectory and speed up other parts.

3.7 Picking Up Yarn Simulated and Physical Experiments

We additionally ran simulated and physical experiments, picking up a short

yarn segment using a fork. For these experiments we happened to also use

a CurvVAE regularization and a slightly different model architecture, as ex-

plained below.

Picking Up Yarn Baseline Method Definition

When presented with a new object configuration, the simplest way to use the

human demonstration data would be to replay the demonstration trajectory

that had an initial object configuration that was most similar to the new con-
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Figure 3.13: Robot camera image before and after string localization

figuration. We label this approach 1NN (one nearest neighbor) and use this as a

baseline approach.

In order to implement the nearest-neighbor algorithm, during trajectory col-

lection we additionally need to record where the string was for each demonstra-

tion. To identify the object configuration on the plate during demonstration col-

lection, we use the wrist-mounted RGB camera on the Kinova Gen3 arm to take

an overhead picture of the scene, with the robot taking the photograph using

the pose shown in Figure 3.8a We use color segmentation to identify the pixels

corresponding to the target object and model the object configuration using a

two-dimensional Gaussian distribution, computing the mean pixel location and

the sine and cosine of twice the orientation angle of the major axis of variation.

We use sine and cosine so that an angle of 0 and 2π are correctly identified, and

we use twice the orientation angle so that a rotation of the string around its cen-

ter by π radians will also be seen as a similar configuration. We use these four

features in the nearest neighbor calculation to compute which training trajec-

tory to execute. An example showing the overhead image of the plate and the

detected object configuration is shown in Figure 3.13.
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Picking Up Yarn Model Details

As before, in this experiment the latent space is three-dimensional and each pose

in a trajectory as a seven-dimensional vector containing the position of the tip

of the fork and the quaternion representing its orientation. For this experiment,

we only subsampled to 100 different waypoints to represent each trajectory. The

quaternion elements were scaled by an additional factor that they were of com-

parable size to the position values which are in units of meters. For this experi-

ment we happened to use a length scale of 0.04m, which is roughly the length of

the prongs of the fork, rather than the 0.08m length scale in the previous model.

Other slightly different hyperparameters were k = 20 basis functions in

the time alignment module (rather than the 50 tested above). The architecture

was much simpler, using two 1D convolutional layers followed by two fully-

connected layers for the embedding functions in our VAE and also for modeling

the time-warping parameters Θ. For our canonical motion module that takes in

a latent and a time and returns the pose, we just used two fully-connected hid-

den layers. Additionally, for these experiments we added a CurvVAE penalty

to the spatial encoding as well. These differences suggest that our approach can

work for a variety of architectures.

We performed an exploratory search for hyperparameters that gave good

performance on the holdout set, and we tuned the γ parameter of the CurvVAE

to just slightly begin to degrade test performance. Our final hyperparameter

choices were to set the β-VAE β = 0.0001, the learning rate for the VAE param-

eters to be 0.0001, the learning rate for the time transformation module to be
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Figure 3.14: Images from an example simulation run

Figure 3.15: Images from an example physical robot run

0.001, and the γ for the CurvVAE penalty to be 0.00001.

We train for 50,000 epochs on a Quadro GV100 GPU, which takes approxi-

mately 2 hours. The resulting model was very similar to the previously trained

model, and for completeness, we present a visualization of latent sweeps in the

Appendix.

Picking Up Yarn Trajectory Search in Simulation

We use PhysX [66] to simulate the fork trajectory’s effect on the environment.

We measured the contours of an OXO Tot Stick & Stay Suction Plate, and created

a triangle mesh to represent it. We ran physical experiments using an EcoChoice

Heavy Weight 6 1/2” Green CPLA Plastic Fork, and we were able to find a 3D

model of that fork from the seller which we decomposed and simplified into
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convex hulls and used in our simulation5. We modeled the yarn as a chain of

eleven overlapping capsules, with total fully outstretched length of 7cm. The

connections between capsules have stiffness to them, preferring to return to a

pre-specified resting angle. We add noise to generate non-zero resting angles

between the capsules, decreasing the resting length of the chain and adding

stochasticity to the simulation. Still images from a simulation run are shown in

Fig. 3.14.

We do not use any of the string location data when building our unsuper-

vised models of trajectory. However, to speed up the search, we seed our latent-

space search with the embedding of the 1NN baseline trajectory.

Picking Up Yarn Physical Robot Execution

We replay the trajectory using a greedy Jacobian-based controller to move the

end-effector along the desired path. We use the average timing across training

data when replaying waypoints in trajectories, slowed down for execution on

the robot. We use rejection sampling to filter starting joint angles so that the full

trajectory is feasible, avoids self-collisions and collisions with the environment,

and avoids joint singularities. Avoiding joint singularities is important because,

for safety, we regularize the calculation of the required joint angle changes to

track the desired poses. Thus, when the robot is near singularities it will not

follow the target trajectory as accurately.

Additionally, we noticed up to an approximate 14mm max tracking error

5Fork purchased from https://www.webstaurantstore.com and 3D model downloaded,
modified, and used under Fair Use
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between the calculated kinematics of the Kinova Gen3 robot arm and the actual

position of the end-effector measured using a Vicon system. The error direc-

tion varied depending on the configuration of the robot arm. To decrease this

tracking error, during trajectory replay we use feedback from the Vicon system

to adjust the target tracking position of the fork tip to adjust for errors, reducing

our max tracking error to around 2.6mm. Still images from a physical robot run

are shown in Fig. 3.15.

Picking Up Yarn Results

We run 20 trials in simulation for each of nine specified string poses and look at

how frequently the yarn ends the episode more than 40mm above the plate. We

find the baseline nearest neighbor method is successful 53% of the time, while

our proposed algorithm increases the success rate to 71%.

On the physical robot, we run three trials at each of those nine string poses

and find that there is a sim-to-real gap. The baseline method is only successful

in 26% of the trials, while our method on the physical robot is successful 52% of

the time. For the same starting pose of the string and the same robot trajectory,

we find that there is stochasticity in whether the trajectory will be successful due

to variations in the internal state of the individual threads in the yarn between

runs, leading to different frictional and deformation behavior.
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3.8 Discussion on Separating Timing and Spatial Latent Vari-

ables

TimewarpVAE is useful for simultaneously learning timing variations and la-

tent factors of spatial variations. Because it separately models timing vari-

ations, TimewarpVAE concentrates the modeling capacity of its spatial la-

tent variable on spatial factors of variation. As discussed further in the Ap-

pendix, TimewarpVAE can be viewed as a natural extension of continuous

DTW. TimewarpVAE uses a parametric model for the time-warping function.

A different approach could be to use a non-parametric model like DTW to warp

the reconstructed trajectory to the input trajectory and then backpropagate the

aligned error. That alternate approach has a much higher computation cost be-

cause it requires computing DTW for each trajectory at each learning step and

does not re-use the time-warper from previous steps. We consider this approach

briefly in the Appendix and leave it to future work to more fully understand the

benefits of this alternate implementation and when it should be used or com-

bined with the proposed TimewarpVAE. While this work focused on trajecto-

ries parameterized by storing the position at each timestep, we believe our ap-

proach could also be applied with some modifications to trajectories which are

parameterized by storing the velocity of the trajectory at each point, as is done

in [32]. To handle trajectories like that, we would need to take into account the

fact that time-warping the trajectory also affects the speed of the trajectory at

each point. In particular, we believe we could use the chain rule in situations

like that. Our decoder network should return the canonical velocity df

ds
(s). Our

time-warper would need to return both the warped time s = φ(t) and also the
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warping velocity at that time ds
dt

= φ′(t) (which we already compute as part

of our parameterization). We could then apply the chain rule to say that the

warped velocity df

dt
(t) = f ′(φ(t))φ′(t). This approach would allow us to add

to the work of [32] and additionally separate the timing and spatial/velocity

latent variables. The benefits of parameterizing the trajectory as a velocity in-

stead of a position should be studied in future work. Additionally, it would be

interesting in future work to look at a decoder that parameterizes the canonical

trajectory as a form of Recurrent Neural Network, as is done in [32]. Since our

time-warping requires varying and irregular sampling intervals of the canonical

trajectory, we would likely need to use a Continuous Recurrent Unit [84] to han-

dle the varying sampling intervals. This chapter measured the spatial error of

reconstructed training and test trajectories, and showed the TrajectoryVAE does

a better job than beta-VAE at compressing spatial information into small latent

spaces. We demonstrated our algorithm on a Kinova Gen3 robot arm, showing

it can generate very fast robot motions.
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CHAPTER 4

JACOBIAN L1 VARIATIONAL AUTO-ENCODER

4.1 Underspecification of the Representation Learning Prob-

lem

Unsupervised representation can take in a collection of data from the world

and figure out how to organize and find patterns in the data without addi-

tional information about how the images were generated. The ideal represen-

tation learning algorithm would compress high-dimensional data into a lower-

dimensional latent representation that contains relevant information about the

ground-truth factors of variation that generated the data.

Inferring a good latent representation from a dataset is a difficult prob-

lem and is generally underspecified in algorithms. This underspecification is

called the “model identification” problem, and one example is that represen-

tation learning algorithms often struggle to specify the correct orientation of a

latent space. That is, optimization criteria used to learn a representation func-

tion might be equally well satisfied by an equivalent representation that is just a

rotation of the latent space by an arbitrary amount. This type of rotation of the

latent space was visualized and described in Fig. 1.4 and Fig. 1.5.

As commonly implemented (using axis-aligned Gaussian posterior distri-

butions), variational autoencoders (VAEs) [48] and their extension, the beta-

VAE [35], solve the rotational part of the model identification issue by tend-

ing to ensure that the generation function’s Jacobian matrix has orthogonal
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columns (i.e., that the generative Jacobian matrix’s right singular values are

aligned with the axes of the latent space) [81, 54]. Intuitively, this is because the

VAE’s stochastic reconstruction cost prefers to budget higher precision (lower

embedding noise) in the directions along which the generative Jacobian changes

most rapidly. [54] draw the parallel between this preferred orientation and lin-

ear principal component analysis (PCA). However, we note that learning algo-

rithms that resolve rotational identification issues through methods related to

PCA will still suffer from an identifiability issue related to rotations that mix the

directions for which the generative Jacobian matrix has equal singular values.

Along these directions, the posterior Gaussian would have approximately equal

variance and be rotationally symmetric.

We propose adding an L1 cost to the generation function’s Jacobian matrix

as a way to resolve that rotational identifiability issue. Since L1 cost is not ro-

tation invariant, L1 regularization creates a preferred latent-space orientation

among directions whose singular values are equal. This use of the L1 norm to

choose an orientation is inspired by similar uses in linear models. For example,

when using a Laplacian prior in Independent Component Analysis (ICA) [40]

and applying it to already-whitened data, ICA rotates the data to minimize the

L1 norm. As shown in [67], that ICA formulation is equivalent to sparse cod-

ing using an L1 cost [68], with the same rotational effect. In Sparse PCA, the L1

norm encourages sparsity in the loadings/mixing matrix (rather than the prin-

cipal components/sources as in ICA) [44, 103], similarly encouraging preferred

orientations. These techniques for preferring certain orientations using the L1

norm are all linear model techniques, and we apply them to nonlinear VAEs by

regularizing the L1 norm of the generator Jacobian matrix, thereby encouraging
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a preferred orientation for our nonlinear models. This chapter will focus its ex-

periments on image data, but we believe the underlying theory should also be

useful for trajectory data.

The motivation above suggests that an L1 norm on the generator Jacobian

can address the rotational identifiability issue, and we think the L1 regulariza-

tion will encourage useful orientations of the latent space. This belief comes

from results on the sparse linear coding of images. In particular, [68] showed

how sparse linear coding on natural images generates local receptive fields simi-

lar to those discovered in the mammalian visual processing system. These types

of localized receptive fields are shown in Figure 4.1. Each image in that figure

corresponds to a direction in the latent space and shows how perturbing the la-

tent value in that direction changes the generated image—white pixels mean the

image gets brighter there, and black pixels mean the image gets darker. For the

ICA basis, we see that perturbations in different latent directions are associated

with localized changes to the image, whereas for the PCA basis, the latent direc-

tions tend to affect the entire image. Adding an L1 penalty to our model should

encourage sparsity within the generative Jacobian columns of our model, mean-

ing that perturbations of latent values along individual latent directions should

modify as few pixels as possible, leading to latent directions that affect the out-

put image in localized regions. Therefore, L1 generative Jacobian regularization

should disentangle representations of different objects in an image. We call the

proposed model trained with this additional regularization a Jacobian L1 regu-

larized variational autoencoder (JL1-VAE).

The use of the generative Jacobian in the JL1-VAE implies a local linear ap-
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(a) PCA (b) ICA

(c) Beta-VAE (d) JL1-VAE (ours)

Figure 4.1: Example columns from generative Jacobian matrices for different
modeling techniques on natural image data collected in [68]. ICA used 100 la-
tent dimensions, of which 20 samples are shown. Beta-VAE used β = 0.01.
JL1-VAE used β = 0.01, γ = 0.01, each on ten latent dimensions.

proximation of the generative function, so, in order for the JL1-VAE to be useful,

the training image data should lie on a manifold [86], and should be sufficiently

well sampled. Additionally, JL1-VAE contains inductive bias, like every other

unsupervised disentanglement algorithm [55]. As mentioned above, JL1-VAE’s

regularization of the generative Jacobian encourages small changes in latent val-

ues to result in sparse (impacting a small number of pixels) changes to the re-

sulting image, similar to local receptive fields. This inductive bias is well suited

for disentangling motions of different objects in an image but would presum-

ably not be useful for whole-image changes, such as rotation of the entire image

or brightness changes across the whole image.

We apply our novel1 JL1-VAE framework to a variety of datasets, giving

1The work in this chapter was previously published as [76]
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qualitative and quantitative results showing that our added L1 cost can encour-

age local alignment of the axes of the latent representation with individual fac-

tors of variation.

4.2 Motivation for the JL1-VAE Approach

Previous work [54] showed that the stochastic reconstruction term of the ELBO,

Ez∼q(z|x) [log(p(x; g(z)))], can be approximated using a second-order Taylor ex-

pansion as:

Ez∼q(z|x)

[

log(p(x; g(z))

]

≈ log p(x|h(x))+
1

2
tr
(
Jg(h(x))

>Hpx(g(h(x)))Jg(h(x))Σz|x(x)
)

(4.1)

Jg is the Jacobian of the generator function, andHpx(g(h(x))) is the Hessian with

respect to g(z) of the log of the generative probability log(p(x; g(z))) evaluated at

g(h(x)). For standard VAE implementations using diagonal Gaussian posteriors

and pixel-factorized generative probabilities, Σz|x(x) and Hpx(g(h(x))) are both

diagonal.

Equation 4.1 shows that the stochastic reconstruction loss of the ELBO can be

approximated by a deterministic reconstruction loss with a (weighted) L2 regu-

larization cost on the Jacobian Jg(h(x)). [54] use this weighted L2 regularization

in the approximation above to show how the ELBO encourages local alignment

of the right singular vectors of Jg to Σz|x(x). That is, larger values of Σz|x(x)

(larger embedding noise) in some directions lead to larger L2 regularization on

the generator Jacobian in those directions. Equivalently, in directions with large

changes in the generator Jacobian, the regularization encourages smaller em-
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bedding noise (more precision) in the posterior Σz|x(x). For this work, we use

the presence of an implicit L2 loss on the generator Jacobian as further motiva-

tion for our choice to add an explicit L1 regularization to the generator Jacobian.

4.3 Related Work on Sparsity and Disentanglement of Latent

Representations

There are several areas of related work. Previous foundational work has an-

alyzed the disentanglement properties of beta-VAEs. We delve into previous

uses of the term “sparse VAE,” as there are (at least) two other common and

well-studied meanings of “sparse VAE,” which we disambiguate from the type

of sparsity we study in this chapter. Additionally, there is previous VAE work

inspired by ICA. Different architectural choices have been shown to improve

disentanglement. Finally, we discuss modifications to the VAE objective that

have previously been studied to improve disentanglement.

Disentanglement of beta-VAEs [61] and [81] show that restricting the poste-

rior covariance to diagonal (called the mean-field assumption) breaks the ro-

tational symmetry of beta-VAEs. [81] further show that this encourages the

columns of the generator Jacobian to be orthogonal, relating local beta-VAE

latent directions with PCA decomposition. In our work, we take this a step

further, explicitly regularizing the sparsity of the generator Jacobian, to break

rotational symmetry between directions with equal singular values in the gen-

erator Jacobian.
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Sparse VAEs: Sparsity in VAE codes Some previous work involving L1 reg-

ularization and VAEs uses the term “sparse VAEs” to refer to sparsity in the

latent values taken on by the latent codes themselves. These works attempt a

minimization of something like ‖z‖1. This meaning is studied in [60, 65, 43].

When we use sparsity in the present work, however, we are not concerned with

the values of the latent z but rather with how small axis-aligned changes in the

latent values affect the output. That is, we are concerned with sparsity of Jg(z),

not z. Our associated cost is ‖Jg(z)‖1. Our use of “sparsity” concerns local dis-

entanglement rather than sparsity in latent values, which would be a type of

global disentanglement.

Sparse VAEs: Sparsity in Network Weights Likewise, other work involving

L1 regularization and VAEs (and neural networks more broadly) uses “sparsity”

to refer to the desire to make many network weights 0, with the motivation

of reducing the size of the stored neural network architecture. This meaning

is seen in [58, 24]. In this work, by contrast, we are interested in sparsity in

the generator Jacobian, not in the network weights. We note the distinction

between the sparsity of individual network weights and sparsity in the Jacobian

of the overall function. Multiplying sparse matrices does not necessarily result

in sparse matrices, and nonlinear activations can allow a sparse Jacobian even if

the network weights themselves are not particularly sparse. Thus, the ‖Jg(z)‖1

cost we study in this work is not what is referred to in studies of the sparsity of

neural networks, which consider regularizations like the L1 cost over network

weights.
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ICA within the VAE Literature Independent Component Analysis (ICA) [40]

is often mentioned in the VAE literature in relation to the role ICA has played in

the theory of identifiability and disentanglement of representations [54, 61, 81,

47, 56]. [87] propose using a structured, rotationally asymmetric prior to encour-

age disentanglement in the embedding. This and other approaches that attempt

to match the embedding distribution globally to a desired shape are very dif-

ferent from the local, Jacobian-based approach we take in this paper. [46] relate

nonlinear ICA with VAEs in the case where the data has an additional observed

variable, and they give a proof that, in that case, their model is identifiable and

correctly disentangles the ground-truth factors of variation. We focus on fully

unsupervised training data and assume that we are not given access to any data

labels. We are not aware of any prior work applying a sparsity cost to the gen-

erator Jacobian, which is the inspiration we take from ICA.

Architectures shown to improve disentanglement Previous work has shown

impressive results from modifying the network architecture to explicitly repre-

sent multiple objects by, for example, learning object masks [31], or by modify-

ing how the latent variable is read into the generative model architecture [97].

[1] and [45] construct model architectures that explicitly encourage sparsity in

the generative network weights. In this work, we focus on how we can regu-

larize the objective function to improve disentanglement rather than studying

how different network architectures can improve disentanglement.

Modification of VAE prior Previous work has also investigated modifications

to the unit Gaussian prior commonly used in VAEs. [91] use a learnable Gaus-
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sian mixture prior. [87] use a generalized Gaussian distribution (that is not rota-

tionally invariant) as the prior. [5] use rejection sampling to form a more compli-

cated, non-rotationally-invariant prior. [23] and [71] even modify the prior to lie

on non-Euclidean surfaces. [47] do not explicitly enforce a prior distribution but

rather use a regularization term to encourage the prior distribution q(z) to be a

factorized distribution. While these approaches pressure the entire embedded

distribution to have certain properties, we are instead focused on how to mod-

ify the learning objective to give local bias toward disentanglement rather than

using more global methods based on the overall distribution of the embedded

dataset.

Regularization of VAEs Several previous works explicitly or implicitly use

L2 normalization of the generator Jacobian [54, 79, 93, 38]. [14] regularize by

‖J>
g (z)Jg(z)− c1‖2 for some constant c. We are not aware of previous investiga-

tions of ‖Jg(z)‖1 regularization for VAEs.

4.4 JL1-VAE Model Loss Calculation and Architecture

4.4.1 Loss Calculation

We define a Jacobian L1 regularized variational autoencoder (JL1-VAE) as a VAE

that is trained using the beta-VAE loss augmented with an L1 regularization of

the Jacobian matrix of the map from latent values to mean generated images.

The regularization term is modulated by a hyperparameter γ.
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Specifically, the maximization objective for the JL1-VAE is the sum over all

datapoints x of

LJL1(x) = Ez∼q(z|x)

[

log p(x|z)− γ
∣
∣
∣
∣Jg(z)

∣
∣
∣
∣
1

]

− βKL (q(z|x)‖N(0, 1)) (4.2)

Since we use a Gaussian posterior q(z|x) = N
(
h(x),Σz|x(x)

)
, we can use

an explicit calculation for the KL-divergence. We estimate the expectation of

log p(x|z) and of γ‖Jg(z)‖1 using a single sample z from the distribution over

which we are taking the expectation. We estimate the full Jacobian matrix Jg(z)

using the finite difference method along each latent dimension. This leads to a

runtime that scales roughly linearly with the number of latent variables in the

VAE architecture.

4.4.2 Architecture

We use a convolutional architecture for our VAEs. In particular, our embedding

architecture consists of convolutional layers followed by a fully connected layer

with ReLU activations. This base model is shared between the mean and log

variance embedding networks. Each embedding network then appends its own

linear, fully connected head to the shared model. We use a diagonal structure for

the log variance estimates to reduce the number of parameters we need to esti-

mate. We use a latent dimension of ten for all experiments, though we have seen

similar results for other latent dimension sizes. The reconstruction architecture

consists of fully connected layers followed by convolutional layers, using ReLU

activations, with a final sigmoidal activation function. The type of architec-

ture used in our experiments is shown in Fig. 4.2. A full set of hyperparameter
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Figure 4.2: The neural network architecture takes in an image (of height h, width
w, and channels c) and performs 2D convolutions followed by fully connected
layers to compute an associated latent value of dimension `. The decoder is
the reverse, consisting of fully connected layers, followed by 2D convolutional
transpose layers (upconvolutions), finally returning an image as the last layer’s
output. Specifics on the number and shape of each type of layer for the different
experiments are contained in the Appendix.

choices for each experiment can be found in the Appendix. When we compare

JL1-VAE with other methods, we ensure consistent architecture choices.

4.5 JL1-VAE Experiments

4.5.1 Datasets

To evaluate the ability of JL1-VAE to disentangle factors of locally variation, we

apply it to a variety of datasets.

The first is natural images in grayscale taken by [68] and cropped to 16× 16-

pixel regions. We do not have labeled “ground-truth factors of variation”

for this data, but we are able to provide qualitative results by inspecting the
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columns of the generator Jacobian matrix. This data was made publicly avail-

able without a specific license, so we analyze it under fair use.

The second is a dataset of simulated 64 × 64-pixel grayscale images of three

black dots on a white background, inspired by [100]. The ground-truth factors

of variation for this dataset are the x/y coordinates of the dot centers. We re-

implement [100]’s code to generate the dot images and modify the code so that

dots can overlap. We note for this dataset that if a model were to disentan-

gle individual dot motions into different latent directions, then, by symmetry,

we would expect identical singular values of Jg for those directions. Thus, we

expect that for this dataset beta-VAEs will be unable to isolate individual dot

motions since it has trouble disentangling directions in which the generator Ja-

cobian has equal singular values.

Finally, we also apply our approach to tiled images of a real robotic arm

taken from the MPI3D-real dataset [28], licensed under Creative Commons At-

tribution 4.0 International License. For each data point, we downsample four

random images of the robot arm holding a large blue square in different loca-

tions and tile the random images in a 2×2 pattern to generate a new, more com-

plicated 64×64-pixel image containing four different images of a real robotic

arm. We call this tiled image dataset MPI3D-Multi.

4.5.2 Training

For the three-dots and MPI3D-Multi datasets, models are trained using a

Bernoulli loss on batches of 64 images over a total of 300,000 batches. The
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Adam optimizer is used with a learning rate of 0.0001 (matching [55]). We

use linear annealing from 0 to the final hyperparameter value over the first

100,000 batches for both the beta hyperparameter and JL1-VAE’s γ parameter

in our implementations for JL1-VAE and beta-VAE (unlike [55]). Annealing is

beneficial in avoiding model collapse when adding our L1 regularization term.

Models are trained on a Nvidia Quadro V100 hosted locally and one hosted on

Google Cloud. Training each JL1-VAE model on ten latent variables takes ap-

proximately 2.5 hours, while training each beta-VAE model takes approximately

45 minutes. In total, training ten JL1-VAE models and ten beta-VAE models for

quantitative evaluation takes roughly 33 hours.

Models are trained for 100,000 batches of 128 images for the natural image

dataset. We use the Adam optimizer with a learning rate of 0.001 and train

on a Nvidia Quadro V100s hosted locally. Training takes nine minutes for the

beta-VAE and 23 minutes for the JL1-VAE.

4.5.3 Evaluation Metrics

Several metrics are commonly used to measure the “disentanglement” of a la-

tent representation. In this chapter, we address two common metrics, the Mu-

tual Information Gap (MIG) [15] and Modularity [78], and show how we are

able to provide extensions to these metrics that give a measure of how well a

representation locally disentangles factors of variation.

The original MIG and modularity metrics measure global disentangle-

ment—that is, they measure across the whole dataset how well each latent vari-
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able maps to a unique ground-truth factor of variation. Since the JL1-VAE does

not add an explicitly global disentanglement incentive to beta-VAEs, but in-

stead is designed to locally encourage disentanglement using the Jacobian of

the generative map, we do not expect it to improve the global disentanglement

of factors of variation necessarily. For example, the JL1-VAE may assign factors

of variation to latent variables using one pairing in one local region of the latent

space and a different pairing in a different region of the latent space. This could

lead to good average local disentanglement but would not lead to good global

disentanglement.

We are therefore interested in defining local disentanglement metrics based

on MIG and modularity. We call these metrics “local MIG” and “local modular-

ity,” and the general form of their calculation is to compute each metric several

times on different random “local” samples from the global dataset and then av-

erage the results. As with MIG and modularity, calculating these disentangle-

ment metrics requires a generative model of the data from ground-truth factor

values.

The key technique for each of our local metrics is to repeatedly compute the

disentanglement metric on random local samples of data. To generate a random

local sample of data, we randomly choose a centroid from the ground-truth

factor values and then random sample N ground-truth datapoints within an

L∞ distance ρ from that centroid. The radius ρ is a hyperparameter determining

how close ground-truth factors of variation need to be in order to be considered

“local.” We scale the hyperparameter ρ as a fraction of each latent variable’s

total range of available values. This set of N datapoints comprises each local
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data sample. For our experiments, we choose N = 10, 000.

We apply the MIG and modularity metrics to each local sample of data

to determine the disentanglement of the latent space in that local region. We

use the MIG and modularity calculation implementations from the open-source

(Apache License 2.0) disentanglement lib library [55].

We repeat this algorithm with 20 different local data samples and report the

average as the local disentanglement score.

4.6 JL1-VAE Results

Qualitative results for the three-dots, MPI3D-Multi, and natural image datasets

are shown, and quantitative results are presented for the three-dots dataset.

4.6.1 Qualitative Results

Qualitative results are generated by inspecting the generator Jacobian at the

(deterministic) latent embeddings for example images. Each generative Jaco-

bian matrix column is associated with a latent direction and shows how the

generated image would change from a slight perturbation to the embedding in

that latent direction. The generative Jacobian matrix columns for natural im-

ages are shown in Figure 4.1. There, we show the largest 20 PCA components,

an arbitrary sample of 20 ICA components (from training 100 ICA components

using FastICA [70]), and the ten Jacobian matrix columns for the beta-VAE and
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(a) Example three-dots images

(b) Jacobian matrix columns for beta-VAE (c) Jacobian matrix columns for JL1-VAE

Figure 4.3: Qualitative results for the three-dots dataset. We show six Jacobian
matrix columns for beta-VAE (β = 4) and JL1-VAE (β = 4, γ = 0.1) evaluated
for the leftmost example image.

JL1-VAE models. Additional visualizations are included in the Appendix. We

discern more localization (results more similar to local receptive fields) in the

JL1-VAE and ICA results compared to the beta-VAE and PCA results.

The same procedure was used for the three-dots dataset and MPI3D-Multi

to generate qualitative results. Results for the three-dots dataset are shown in

Figure 4.3. There, we show the six Jacobian columns with the largest L2 norms

for the three-dots dataset for both our JL1-VAE and beta-VAE (all ten Jacobian

columns are visualized in the Appendix). Qualitatively, when evaluating the

Jacobian of the generator function for our JL1-VAE, individual dot motions are

separated into different latent components. The beta-VAE does not exhibit this

behavior.

For the MPI3D-Multi dataset, containing tiled images of a real robot, the

JL1-VAE again does a better job of separating the four robots in each image into

separate latent variables. These results are presented in Figure 4.4.
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(a) MPI3D-Multi image
(b) Beta-VAE reconstruc-
tion

(c) JL1-VAE reconstruc-
tion

(d) Jacobian matrix columns for a beta-
VAE

(e) Jacobian matrix columns for a JL1-VAE

Figure 4.4: Qualitative results for MPI3D-Multi. JL1-VAE shows stronger pres-
sure to locally disentangle individual robot motions. Both models used β =
0.01. For JL1-VAE, γ = 0.01.

4.6.2 Quantitative Results

Local disentanglement scores are generated for the models trained on the three-

dot images.

To observe the effect of the ρ parameter of our local disentanglement metrics,

in Figure 4.5 we plot the varying local disentanglement scores as we change the

ρ parameter for our JL1-VAE (β = 4.0 and γ = 0.1) and a standard beta-VAE (β =

4.0). The hyperparameter for β was chosen near the middle of the range used

in [55]. We also tried other hyperparameter values and saw similar results. Too

large a γ can lead to model collapse, so we chose a small enough γ to avoid that

collapse but otherwise large enough to start to see reconstruction performance

degradation, so we knew that its regularization was affecting model training.

We note that JL1-VAE attains higher local disentanglement scores compared
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to beta-VAEs, which is especially true as we look at more localized samples

of data, corresponding to a smaller ρ parameter. For ρ = 0.1, we see signifi-

cantly higher local disentanglement scores for JL1-VAE compared to beta-VAE

(p < 0.001 for T-test), but for ρ = 1, testing for global disentanglement, we see

indistinguishable disentanglement scores between the two (p > 0.05 for T-Test).

Our JL1-VAE is able to locally disentangle factors of variation for the three-dots

dataset, but does not globally disentangle factors of variation.

(a) Local MIG scores (b) Local modularity scores

Figure 4.5: Local disentanglement scores varying the locality parameter ρ. Ten
JL1-VAE and beta-VAE models were trained on the three-dots dataset with β =
4 and, for JL1-VAE, γ = 0.1.

Fixing the ρ parameter to 0.1, we also compute the local MIG and local mod-

ularity scores for six different comparative methods, namely beta-VAE, Factor-

VAE, DIP-VAE-I, DIP-VAE-II, β-TCVAE, and AnnealedVAE, using the imple-

mentations of disentanglement lib with our convolutional architecture. A

description of each of these models can be found in [55]. We trained ten it-

erations of those models with different random seeds using hyperparameters

chosen near the middle of the suggested ranges in that work. That included

training ten new beta-VAE models with new random seeds. All models were
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trained with ten latent dimensions.

Local MIG and local modularity scores are shown in Figure 4.6. We see a

range of disentanglement scores due to the random seeds used to generate our

models (ten models for each learning algorithm). Additionally, our local MIG

and modularity metrics have some additional stochasticity due to the random-

ness in sampling 20 local samples of 10,000 points during the calculation of

those metrics. Nevertheless, we observe significantly higher disentanglement

scores (p < 0.001 for T-test) for our JL1-VAE compared to every baseline method.

(a) Local MIG scores (b) Local modularity scores

Figure 4.6: Local disentanglement scores for JL1-VAE models and baseline im-
plementations from [55]. The baseline implementations use default hyperpa-
rameters from that paper, choosing values near the middle when a range of hy-
perparameters are listed. Each model is run ten times with new random seeds.
Local disentanglement is calculated using ρ = 0.1 with 20 different local sam-
ples.
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4.7 Discussion of JL1-VAE

In this chapter, we presented JL1-VAE, a VAE augmented with an L1 regular-

ization to the Jacobian to improve local disentanglement. We extended the MIG

and modularity disentanglement metrics to generate metrics measuring local

disentanglement. We evaluated our model on natural images, simulated im-

ages of dots, and tiled images of a real robot, and we showed qualitatively and

quantitatively that our method can improve local disentanglement in the gen-

erated representation. We believe that for trajectory data, the disentanglement

will be according to different temporal regions of the trajectory, like the disen-

tanglement here was over different pixel regions of the image.

Our added L1 regularization of the Jacobian of the generator function is mo-

tivated by the use of L1 regularization to prefer certain orientations in ICA and

sparse coding, by a desire to relate each latent direction to sparser pixels (more

similar to localized receptive fields), and by the implicit L2 regularization al-

ready present in beta-VAEs. We show that this L1 regularization term can en-

courage latent axes to align locally with ground-truth factors of variation. While

this approach shows promise for local alignment, it does not address global

alignment issues. That is, in one part of the dataset, the learned representation

may assign a latent variable e1 to follow a certain latent factor of variation. In a

different part of the dataset, it might be a different latent variable e2 that follows

that latent factor of variation.

Regarding “no free lunch” theorems that show unsupervised disentangle-

ment is impossible without inductive biases [55], we note that L1 regularization
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of the generative Jacobian generates an inductive bias. The inductive bias en-

courages small axis-aligned perturbations of the latent space to result in sparse

changes to the image space, whether that be expressed as localized receptive

fields that act only on small regions of the image space, as seen in Figure 4.1, or

motions of only a single dot or robot, as seen in Figures 4.3 and 4.4. Cases for

which this inductive bias might not add value would include, for example, sin-

gle robot images from MPI3D, where the primary ground-truth factors of local

variation affect the same object within the same image patch or images where

one factor of variation includes global lighting changes.
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CHAPTER 5

CONCLUSION

5.1 Summary of Contributions

This work presented three approaches to improve how robots learn latent

spaces for robotic applications. These improvements were better regulariza-

tion of the latent space to avoid overfitting to the training data (CurvVAE), in-

tentional separation of timing and spatial factors of variation when learning

latent spaces of trajectory data (TrajectoryVAE), and local disentanglement of

factors of variation that affect different regions of images (JL1-VAE). Together,

these improvements are a step toward more useful and understandable latent

variable models that can be applied in physical robotic domains. They are all

improvements to low-dimensional latent variable models and provide ways for

robots to model datasets in ways that can result in more useful (less overfit to the

data) and more interpretable (with a simpler relationship between latent vari-

ables and the data) models. These contributions are all based on modifying the

function from the latent space to the generated data, whether by adding a reg-

ularization term (CurvVAE, JL1-VAE, and TrajectoryVAE) or by also enforcing

architectural constraints to force meaning on the latent values (TrajectoryVAE).

Additionally, this dissertation presented several physical robot experiments to

demonstrate the benefits of the presented contributions and give further evi-

dence of the usefulness of latent variable models for robotic applications.
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5.2 Potential Extensions of Presented Algorithms

In our motivational example of how a latent variable model could be used to

select a trajectory for the robot to execute, we did not explore the possibility

that the trajectory would not satisfy the desired task. Unplanned events often

happen in robotics, so waiting until a full trajectory is complete before noticing

task failure is generally inefficient. Using technical terminology, the fact that

our proposed method and robot experiments rely on open-loop execution of the

trajectories is an inefficiency in the current implementation of trajectory-based

learning. While we could wait for the trajectory to finish before picking a new

trajectory to execute and trying again, it would be more efficient for that process

to happen during trajectory execution, perhaps even changing the trajectory

rather than restarting the trajectory. Future work could incorporate feedback

from the user or the environment during trajectory execution to detect and react

to deviations from the desired outcome.

Our example use cases rely on a human picking from the low-dimensional

latent space to choose a trajectory or an image. That use case gives a clear moti-

vation for why learning a simple, elegant, interpretable latent variable model of

arbitrary data is useful. However, presumably there are instances where these

types of latent variable models would also make it easier for robots to choose

trajectories to execute autonomously. Future work could explore whether im-

proved latent variable models can help autonomous learning agents choose bet-

ter trajectories.

We note that the JL1-VAE work was only applied to image data. We would
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like to see this approach applied to multimodal data gathered from a real robotic

system to understand broader applications. For example, this data could poten-

tially be applied to trajectory data to encourage disentanglement of different

temporal regions of a trajectory (latent directions that might only affect the be-

ginning or end of the trajectory) as opposed to different spatial areas of an im-

age.

We note that many of these approaches will increase the training time of

the latent space. For example, JL1-VAE currently calculates the full Jacobian of

the generator during training, leading to training times that scale linearly with

the number of latent dimensions. Future work could improve the regularization

terms’ efficiency through a more efficient sampling-based approach, whether by

sampling only certain Jacobian columns during training or by somehow com-

puting the regularization term less frequently.

Additionally, a practical limitation inherent in the proposed approaches to

learning trajectories from human demonstration is the need to compute how

the robot’s actual joints should move in order for the robot’s end-effector to

match the desired demonstration motion. When speed is not a concern, this

translation has a straightforward solution. Any inverse kinematics solver can

solve the robot’s initial pose. Then, the inverse Jacobian can be used to calculate

the required joint changes to move the end-effector along the desired trajectory.

However, when using a physical robot, it is easy to encounter situations where

that approach will hit joint speed or torque limits. In cases with many solu-

tions to the inverse kinematics problem, multiple solutions can be searched to

find a feasible joint motion for the robot. For example, a 7-degree-of-freedom
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robot will generally have a free degree of freedom that can be used to adjust the

position of the robot joints without changing the position or orientation of the

end-effector. Likewise, suppose we only constrain the end-effector’s position

(not its orientation) on a four or higher degree-of-freedom robot arm. In that

case, additional degrees of freedom can be changed without moving the end-

effector position. The search over these degrees of freedom at each timestep in

the trajectory in joint space to minimize the required torque to execute the de-

sired end-effector motion in task space can be written as a large non-convex op-

timization problem with no elegant solution. Future work could improve how

robots with extra degrees of freedom can learn to execute desired end-effector

motions using minimal energy or time.

5.3 Broader Perspectives

There are currently many active areas of research in robotics and artificial in-

telligence. For manipulation tasks, one active area for teaching robots to per-

form complicated manipulation tasks is through learning from demonstration.

Since many humans can easily perform the manipulation task we want the

robot to learn, it makes sense to try to have the human transfer that knowledge

to the robot by demonstrating how to perform the desired motions. The type

of learning-from-demonstration approach presented in this dissertation has re-

cently had a resurgence, suggesting that it is a good approach. For example,

recent impressive advances in robotic manipulation, like Diffusion Policy [18]

and RT-2 [102], rely on human demonstration data to teach the robot how to

perform manipulation actions. This work focuses on ways to model human
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demonstration data cleanly using latent variable models. Many works have

focused on robot learning without any human demonstration data. However,

adding human demonstration data to those approaches is likely to accelerate

robot learning even faster.

5.4 Greater Goal and Vision of this Work

The various components of this work come together toward the greater goal of

having robots learn simple, accurate, and useful generative models. The struc-

ture of all these contributions has been to take some task, like generating move-

ments to pick up food with a fork, and break it down into the simplest possible

training dataset, like picking up a single banana slice from a particular known

location, and then explore how we can build simple models of trajectories to

solve that single task. We found interesting challenges on each task, like how to

handle small dataset sizes (a challenge we tackled with CurvVAE), how to han-

dle the timing of trajectories (a challenge we tackled with TimewarpVAE), and

how to handle degeneracies in choice of rotation of the meaning of latent space

directions (a challenge we tackled with JL1-VAE). Each of these approaches

helped with particular challenges, but depending on the problem at hand, they

can be combined as needed.

My vision of how these contributions could be best used in practice would

be to construct a library of simple generative models to solve a variety of tasks,

each trained on curated data to solve a particular task. For example, one model

in the library could be the generative model to pick up banana slices off of a
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plate, like the model presented in the CurvVAE work. Another model in the

library, like the model presented in the TimewarpVAE work, might be used to

scrape food up along the contours of a bowl with a particular size and shape.

One benefit of focusing the generated models on small tasks is that they can be

validated through manual sampling of latent sweeps, as was done in this work,

or potentially through more automated validation. The goal would be to check

each individual generative model to confirm that it would conform to desired

safety constraints (for example, staying within some desired workspace, below

some maximal speed, etc.) as long as the input latent values were within some

known safe bounds. The choice of model from the library could then be selected

by the user (through some AI-assisted search through the library of validated

models) and the choice of latent to execute could then also be selected by the

user (again, through a potentially AI-assisted through the latent space). This

vision of the user selecting and then executing a full motion is somewhat differ-

ent from the type of manual control seen in shared autonomy [42] or a learned

mapping from continual joystick inputs to robot actions [57] where the user is

constantly providing control input. It is closer to how I imagine performing mo-

tions like striking a nail with a hammer or swinging a golf club, where almost

all of the motion planning and selection happens before the execution. My view

in this work is that the desired motion should be able to be explained to the

robot and selected before execution and that further motion selections should

not need to be made during the execution of the desired trajectory unless some-

thing unexpected happens.
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5.5 Future Human User Studies

As part of this grand goal, it will be important and useful to continually test with

human participants in future work. Questions that should be studied in the fu-

ture include testing whether the learned latent spaces really are “interpretable”

to human users. Can the user quickly select a desired trajectory by searching the

latent space from the learned model? How quickly does a user become famil-

iar with how the different latent directions affect the specified trajectory? Is it

important that different models in the library maintain certain conventions for

how latent values affect trajectories? How should the robot display the user’s

specified trajectory back to the user? For the fork trajectory work, if the robot

moves the fork to the starting pose of the trajectory, I am able to get a good

feel for what the rest of the trajectory will look like. However, for more com-

plicated trajectories, what type of display or projection best allows the user to

understand the selected trajectory? What input modality works well for select-

ing the latent value? How much assistance in selecting latent value is helpful?

These questions could be studied and evaluated using the framework presented

in [37]. Similar questions have been addressed in [7] and would need to be re-

evaluated as enhancements are made to the robotic system. All these questions

are critical for moving this work from research into practice and for developing

this grand goal into a usable framework for real human use.
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APPENDIX A

APPENDIX

A.1 Derivation of TimewarpVAE from Dynamic Time Warping

Dynamic time warping (DTW) compensates for timing differences between

two trajectories by retiming the two trajectories so that they are spatially close

to each other at matching timestamps. In this section, we explicitly derive

TimewarpVAE from continuous dynamic time warping, the formulation of dy-

namic time warping for continuous functions presented by [52].

A.2 Continuous Dynamic Time Warping

We begin with a brief summary of continuous DTW. Given two trajectories

x0 and x1 (each a function from time in [0, 1] to some position in R
n), contin-

uous DTW learns two time-warping functions, ρ0 and ρ1, where each time-

warping function is monotonic and bijective from [0, 1] to [0, 1]. The goal is to

have the time-warped trajectories be near each other at corresponding (warped)

timesteps. Mathematically, ρ0 and ρ1 are chosen to minimize the integral

∫ 1

0

‖x1 (ρ1(s))− x0 (ρ0(s))‖
2 (ρ0)

′(s) + (ρ1)
′(s)

2
ds (A.1)

This integral is the distance between the trajectories at corresponding timesteps,

integrated over a symmetric weighting factor.

This algorithm has a degeneracy, in that many different ρ0 and ρ1 will lead

93



to equivalent alignments ρ1 ◦ ρ
−1
0 and will therefore have equal values of our

cost function. This becomes relevant when generating new trajectories from the

interpolated model, as it requires choosing a timing for the generated trajectory.

A.2.1 Reformulation of Continuous DTW

The optimization criterion of continuous DTW can be rewritten as follows:

Given the time-warping functions ρ0 and ρ1 from above, define φ0 = ρ−1
0

and φ1 = ρ−1
1 . Let the function f : [0, 1] × [0, 1] → R

n be defined as

f(s, z) = (1− z)x0(ρ0(s)) + zx1(ρ1(t)). That is, f(s, z) is the unique function that

is linear in its second parameter and which satisfies the boundary conditions

f(φ0(t), 0) = x0(t) and f(φ1(t), 1) = x1(t). These boundary conditions associate

x0 with z0 = 0 and x1 with z1 = 1.

Our minimization objective for choosing ρ0 and ρ1 (or, equivalently, for

choosing their inverses φ0 and φ1) can be written in terms of f as

1

2

∫ 1

0

∥
∥
∥
∥
∥

∂f(s, z)

∂z

∣
∣
∣
∣
s=φ0(t),z=0

∥
∥
∥
∥
∥

2

dt+
1

2

∫ 1

0

∥
∥
∥
∥
∥

∂f(s, z)

∂z

∣
∣
∣
∣
s=φ1(t),z=1

∥
∥
∥
∥
∥

2

dt. (A.2)

The derivation goes as follows: We define φ0 = ρ−1 and φ1 = ρ−1, and

we define the function f : [0, 1] × [0, 1] → R
n to be the unique function that

is linear in its second parameter and which satisfies the boundary conditions

f(φ0(t), 0) = x0(t) and f(φ1(t), 1) = x1(t). Equivalently, it satisfies the boundary

conditions f(s, 0) = x0(φ
−1
0 (s)) and f(s, 1) = x1(φ

−1
1 (s)).
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Substituting these definitions gives an optimization criterion of

∫ 1

0

∥
∥x1

(
φ−1
1 (s)

)
− x0

(
φ−1
0 (s)

)∥
∥
2

(
φ−1
0

)′
(s) +

(
φ−1
1

)′
(s)

2
ds (A.3)

The boundary conditions of f imply this is equal to

1

2

∫ 1

0

‖f(s, 1)− f(s, 0)‖ dφ−1
0 (s) +

1

2

∫ 1

0

‖f(s, 1)− f(s, 0)‖ dφ−1
1 (s) (A.4)

And now, performing a change-of-variables u = φ−1
0 (s) and v = φ−1

1 (s) gives

1

2

∫ 1

0

‖f(φ0(u), 1)− f(φ0(u), 0)‖
2 du+

1

2

∫ 1

0

‖f(φ1(v), 1)− f(φ1(v), 0)‖
2 dv (A.5)

Since f is linear in its second coordinate, we can write this in terms of the partial

derivatives of f

1

2

∫ 1

0

∥
∥
∥
∥
∥

∂f(s, z)

∂z

∣
∣
∣
∣
s=φ0(u),z=0

∥
∥
∥
∥
∥

2

du+
1

2

∫ 1

0

∥
∥
∥
∥
∥

∂f(s, z)

∂z

∣
∣
∣
∣
s=φ1(v),z=1

∥
∥
∥
∥
∥

2

dv (A.6)

A.2.2 Simultaneous Time-Warping and Manifold Learning on

Trajectories

The relation to TimewarpVAE is as follows:

For each trajectory xi, TimewarpVAE learns a low-dimensional latent repre-

sentation zi ∈ R
` associated with that trajectory. These zi are the natural general-

izations of the reformulation of continuous DTW above, which had hard-coded

latent values z0 = 0 and z1 = 1 for the two trajectories.
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For each trajectory xi, TimewarpVAE learns a time-warping function φi that

transforms timesteps to new canonical timings. These φi are the natural exten-

sion of the φ0 and φ1 from above.

TimewarpVAE learns a generative function f which, given a canonical times-

tamp s and a latent value z, returns the positon corresponding to the trajectory

at that time. This is an extension of the function f , with relaxations on the linear-

ity constraint and the boundary conditions. Instead of requiring f to be linear

in the z argument, we parameterize f with a neural network and regularize it to

encourage f to have small partial derivative with respect to the latent variable

z. This regularization is described in Section A.2.3. Instead of a boundary con-

straints requiring f(φi(t), zi) to be equal to xi(t), we instead add an optimization

objective that f(φi(t), zi) be close to xi(t),

A.2.3 TimewarpVAE Regularization of the Decoder

Training the decoder using our optimization objective includes adding noise ε

to the latent values z before decoding. This encourages the decoder to take on

similar values for nearby values of z. In particular, as described by [54], this

will add an implicit Jacobian squared regularization of the decoder over the z

directions. Penalizing these ‖∂f(s,z)
∂z

‖2 terms is exactly what we want for our

manifold-learning algorithm. Additionally, we note that we do not add any

noise to the temporal encoder when computing the reconstruction loss, so our

beta-VAE style architecture does not include any unwanted regularization of

‖∂f(s,z)
∂s

‖2.
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A.3 Degeneracy of Time Warping Using Notation of [98]

Using the notation of [98], the timing degeneracy noted in the main paper also

applies. For any set of time-warping functions T θi , one for each of the Nk dif-

ferent trajectories ui with class label yi out of K possible class labels, all of those

time-warping functions can be composed with some additional fixed diffeomor-

phic warping T p without changing the Inverse Consistency Averaging Error.

That is, composing all time-warps with a time-warping function T p to gener-

ate T̃ θi = T θi ◦ T p will not affect the Inverse Consistency Averaging Error, since

now the (perturbed) average warped trajectory for cluster k µ̃k is the warp of

the previous average warped trajectory µk

µ̃k =
1

Nk

∑

ui ◦ T
θi ◦ T p =

1

Nk

(∑

ui ◦ T
θi

)

◦ T p = µ ◦ T p (A.7)

.

The inverse T̃−θi is simply T−p ◦ T−θi

The Inverse Consistency Averaging Error using those perturbed time-warps

T̃ is the same as that computed using the original time-warps.

LICAE(T̃ ) =
K∑

k=1

1

NK

∑

i:yi=k

∥
∥
∥µ̃k ◦ T̃

θi − ui

∥
∥
∥

2

`2

(A.8)

=
K∑

k=1

1

NK

∑

i:yi=k

∥
∥µk ◦ T

p ◦ T−p ◦ T−θi − ui
∥
∥
2

`2
(A.9)

=
K∑

k=1

1

NK

∑

i:yi=k

∥
∥µk ◦ T

−θi − ui
∥
∥
2

`2
(A.10)

= LICAE(T ) (A.11)
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This shows that there is a degeneracy over the choice of warping of the

warped trajectories. Warped trajectories can all be additionally warped by an-

other time-warping function without changing the Inverse Consistency Averag-

ing Error.

A.4 TimewarpVAE Time-Warper Effect on Trained Model

In Fig. A.1 we show how varying the time-warper parameters affects the timing

of the generated trajectory for one of the TimewarpVAE letter models. Here,

we choose five different sets of time-warper parameters, and plot the resulting

time-warper function φ(t). We then decode the same spatial trajectory using

those five latent parameters. The resulting trajectories spatially would look all

the same, and we plot the X and Y locations of the generated trajectories as a

function of time. The associated timings of the trajectories changes due to the

time-warper function.

A.5 TimewarpVAE Additional Interpolations for Models

Here, we present additional interpolation results, all on 16 latent dimensions

and β = 0.001. We note that the convolutional encoder/decoder architecture in

beta-VAE in Fig. A.2b does not appear to have as strong an implicit bias toward

smooth trajectories as the TimewarpVAE architecture. This makes sense be-

cause the TimewarpVAE architecture decomposes the generative function into

a component g(s) which computes poses as a function of time, likely inducing
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Figure A.1: Decoding the same spatial latent variable using different time-
warping parameters will give the same spatial trajectory but with different tim-
ings (fast or slow at different times). We plot the time-warping functions for five
different timing latents and the generated trajectories for a single spatial latent
value by showing the generated positions as a function of time.

an inductive bias toward smoother trajectories as a function of time.

The interpolation in Fig. A.2a shows that in the ablation of TimewarpVAE

without the timing module the interpolation does not preserve the style of the

“A”. Likewise, the DMP interpolation in Fig. A.2c does not preserve the style of

the “A”.

A.6 TimewarpVAE Equivalence of Regularizing φ or φ−1

We note that our regularization is the same, regardless if we regularize φ or

φ−1. We show this by applying the substitution s = φ(t), ds = φ′(t)dt. That

substitution gives:
∫ 1

0

(

1− 1
φ′(φ−1(s))

)

log (φ′(φ−1(s))) ds.
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Figure A.2: Additional interpolation results

We use the identity (φ−1)′(s) = 1
φ′(φ−1(s))

to simplify to

∫ 1

0

(
1− (φ−1)′(s)

)
log

(
1

(φ−1)′(s)

)

ds =

∫ 1

0

(
(φ−1)′(s)− 1

)
log
(
(φ−1)′(s)

)
ds

(A.12)

This is exactly our regularization applied to the function φ−1. Thus, we

note that our regularization is symmetric. Our regularization cost is the same

whether it is applied to φ (the function from trajectory time to canonical time)

or applied to φ−1 (the function from canonical time to trajectory time).

It didn’t have to be that way. For example, if our cost function

were of the form
∫ 1

0
log2(φ′(t))dt, the substitution above would give a cost

∫ 1

0
1

φ′(φ−1(s))
log2(φ′(φ−1(s)))ds which simplifies to

∫ 1

0
1

φ′(φ−1(s))
log2((φ−1)′(s))ds
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which equals
∫ 1

0
(φ−1)′(s) log2((φ−1)′(s))ds which is different from applying the

regularization procedure to φ−1 which would have given a regularization term

of:
∫ 1

0
log2((φ−1)′(s))ds

A.7 Inspiration for Regularization Function

Our regularization function was inspired by Unbalanced Optimal Control. If

we assign a uniform measure U to [0, 1], we note that our regularization cost is

exactly the symmetric KL Divergenge between U and the pushforward φi∗U . For

each φi, the pushforward φi∗U has a probability density function 1/(φ′
i(φ

−1
i (s))),

and the symmetric KL divergence cost DKL(U|φi∗U) +DKL(φi∗U|U) gives the

loss given above.

We work through the explicit mathematics below.

A.7.1 Pushforward of Probability Density Function

If F0 is some cumulative distribution function, and F1 is the CDF generated by

the pushforward of a function φ then we have the simple identity F1(φ(t)) =

F0(t). Taking the derivative of both sides with respect to t gives F ′
1(φ(t))φ

′(t) =

F ′
0(t). The substitutions s = φ(t) and φ−1(s) = t give F ′

1(s) =
1

φ′(φ−1(s))
F ′
0(φ

−1(s)).

Since the PDF is the derivative of the CDF, then writing f0 and f1 as the corre-

sponding PDFs of F0 and F1, we see

f1(s) =
1

φ′(φ−1(s))
f0(φ

−1(s)) (A.13)
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In the simple case where f0 = U , the uniform distribution over [0, 1], then f0(t) =

1, so we have our pushforward

(φ∗U) (s) =
1

φ′(φ−1(s))
(A.14)

A.7.2 Symmetric KL Divergence Calculation

The KL divergence DKL(U|φ∗U) is
∫ 1

0
log (φ′(φ−1(s))) ds. Substituting φ(t) = s

and the corresponding φ′(t)dt = ds gives
∫ 1

0
φ′(t) log (φ′(t)) dt. Likewise, the KL

divergence DKL(φ∗U|U) is
∫ 1

0
1

φ′(φ−1(s))
log
(

1
φ′(φ−1(s))

)

ds, which simplifies with

the same substitutions to −
∫ 1

0
log (φ′(t)) dt.

The symmetric KL divergence cost is thus

DKL(U|φ∗U) +DKL(φ∗U|U) =

∫ 1

0

(φ′(t)− 1) log (φ′(t)) dt (A.15)

A.8 Initialization of Neural Network for f(s, z)

As mentioned above, the neural network f(s, z) is split into T(z) and g(s). Since

g(s) takes in a canonical time s ∈ [0, 1] which we want to have roughly uniform

modeling capacity over the full range of s from 0 and 1, we initialize the first

layer of the neural network’s weights, W (a matrix with one column), and bias

b (a vector) for g(s) in the following way.

We initialize the values in W to be randomly, independently −G or G with

equal probability, where G is a hyperparameter.
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(a) Default PyTorch Initialization (b) Custom Initialization

Figure A.3: Outputs of first layer of the neural network g(s).

We then choose values of b so that, for each (output) row j, which we denote

Wj and bj the y-intercepts of the function y = gj(s) = Wjs + bj are each an

independent uniformly random value in [0− η, 1 + η]

Visually, the effect of this initialization can be seen by plotting the first layer’s

transformation ELU(Ws+b) using PyTorch’s default initialization and using our

proposed initialization, where ELU is the Exponential Linear Unit introduced

by [20]. PyTorch’s default implementation randomly initializes the output func-

tions to be distributed symmetrically around s = 0. Additionally, much of the

modeling capacity is assigned to variations outside the domain [0, 1]. Since we

know that the input timestamp will be s ∈ [0, 1], our initialization focuses the

modeling capacity near [0, 1] and is symmetric around the middle of that range

s = 0.5.
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A.9 TimewarpVAE Timing Noise Data Augmentation

For data augmentation of timing noise, we create perturbed timesteps to sam-

ple the training trajectories as follows. First, we construct two random vectors

νin and νout of uniform random numbers between 0 and 1, each vector of length

10. We then square each of the elements in those vectors and multiply by a

noise hyperparameter η and take the cumulative sum to give perturbation vec-

tors for input and output timings. We add each of those vectors to a vector

with ten elements with linear spacing, [0, 1/9, 2/9, 3/9, . . . , 1]. We then normal-

ize those perturbed vectors so that the last elements are again 1. The resulting

vectors now give nicely symmetric, monotonic x and y coordinates of knots

for a stepwise-linear perturbation vector which we can subsample at arbitrary

timesteps to give desired noise-added output timesteps. We choose η = 0.1 in

our experiments, giving noise functions plotted in Fig. A.4.

When using this data augmentation, each time we pass a training trajec-

tory into our model, instead of sampling the training trajectory at T uniformly-

distributed timesteps between 0 and 1 to construct our x ∈ R
T×n, we first per-

turb all those timesteps by passing them through a randomly generated noise

functions. This means that each x we pass into our learning algorithm has a

slightly different timing than the training data, allowing us to perform data aug-

mentation on the timings of the training data.
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Figure A.4: Example (random) functions used to add timing noise during data
augmentation

A.10 Alternative TimewarpVAE Approach Directly Using Dy-

namic Time Warping

An alternative formulation of TimewarpVAE, which we call TimewarpVAE-

DTW, is to collect the decoded trajectory as a vector by running the decoder

f(s, z) over multiple, evenly-sampled canonical timesteps s, and then warping

those generated timesteps to the training data using DTW. This is more similar

to Rate Invariant AE, in that the time-warping happens after trajectory genera-

tion, however, we do not require linear interpolation. Instead, we convert the

DTW alignment into a loss in such a way that all canonical trajectory points are

used and averaged (using the same weightings we descriped for our Aligned

RMSE). This avoids the problem encountered in Rate Invariant AE where parts

of the canonical trajectory can be completely ignored. TimewarpVAE-DTW

requires running DTW to align each reconstructed trajectory to its associated
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Figure A.5: Performance comparison between TimewarpVAE and
TimewarpVAE-DTW

training trajectory every time the decoder function is executed during train-

ing. This is significantly less efficient than our suggested implementation of

TimewarpVAE, because it requires many executions of dynamic time warping

with no re-use of the DTW results between training steps. Our suggested im-

plementation, TimewarpVAE, explicitly models the time-warping, so is able to

re-use (and update) the warping function between steps, rather than recalculat-

ing it from scratch each time. However, we note in Fig.A.5 that TimewarpVAE-

DTW, though less efficient, can give comparable results. In this implementation

we use DTW, but a Soft-DTW [21] could be used instead.

A.10.1 TimewarpVAE Hyperparameters

The specific training architectures we use is shown in Table A.1. We use a kernel

size of 3 for all convolutions. e is the spatial encoding architecture (which is al-

ways reshaped to a vector and followed by two separate fully connected layers,

one outputting the expected encoding, and one outputting the log of the diag-

onal of the covariance noise). h is the temporal encoding architecture, which is
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always followed by a fully connected layer outputting a vector of size K = 50.

g(s) is part of the factorized decoder architecture, which is followed by a fully

connected layer outputing a vector of size m = 64. T(z) is the other part of the

factorized decoder architecture, which is followed by a fully connected layer

outputting a vector of size nm where n is the number of channels in the train-

ing data (2 for handwriting, 7 for fork trajectories) and m = 64. For beta-VAE,

instead of the factorized decoder architecture, we use one fully connected layer

with output size 800, which we then reshape to size 25× 32. This is followed by

one-dimensional convolutions. Following the approach of [53], for the convo-

lutions in the beta-VAE architecture, instead of doing convolutional transposes

with strides to upsample the data, we instead always use a stride length of 1 and

upsample the data by duplicating each element before performing each convo-

lution. Thus, the lengths expand from 25 in the input to the output size of 200

after the three convolutions.

We use a learning rate of 0.0001, a batch size of 64, and a rectified linear

unit (ReLU) for all spatial and temporal encoder nonlinearities, except for Rate

Invariant AE for which follow the literature and we use Tanh. We use an expo-

nential linear unit (ELU) for the decoder nonlinearities for TimewarpVAE, we

use ReLU for the decoder nonlinearities for beta-VAE, and we again use Tanh

for the Rate Invariant AE. We choose a variance estimate of σ2
R = 0.01 for our

data, but this hyperparameter is not critical, as it is equivalent to scaling β and

λ in our TimewarpVAE objective. In order to compute the Rate (information

bottleneck) of the Rate Invariant AE, we implement it as a VAE instead of an

autoencoder, only adding noise to the spatial latent, not to the timing latent val-

ues. We use 199 latent variables for the timing (one fewer than the trajectory
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Table A.1: Hyperparameters

Name e conv channels h conv channels g(s) fc T(z) fc f fc
strides strides conv channels

TimewarpVAE [16,32,64,32] [16,32,32,64,64,64] [500,500] [200] –
[1,2,2,2] [1,2,1,2,1,2]

NoTimewarp [16,32,64,32] – [500,500] [200] –
[1,2,2,2]

NoNonlinearity [16,32,64,32] [16,32,32,64,64,64] [500,500] [] –
[1,2,2,2] [1,2,1,2,1,2]

beta-VAE [16,32,64,32] – – – [800]
[1,2,2,2] [20,20,n]

Rate Invariant AE [32,32,32] – – – [6400]
[1,1,1] [32,32,n]

length), and vary the number of spatial latent variables.

A.11 TimewarpVAE Robot Execution

Here we give specifics on the execution of the TimewarpVAE trajectory on the

Kinova Gen3 robot arm.

A.11.1 Optimization Formulation

We formulate an optimization problem to find the fastest feasible trajectory that

satisfies the joint speed an torque constraints of our Kinova Gen3 robot arm and

follows the training demonstration trajectory within a defined time-warping

cost. We use Drake [89] to efficiently formulate several of the constraints, in-

cluding the forward dynamics of the manipulator arm.

We write the time-warping function φ now as a function from real time [0, T ]
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to canonical time [0, 1]. Given the target canonical path p(s) : [0, 1] → R
3, and

our robot joints as a function of the real time j(t) : [0, T ] → R
7 and our forward

robot kinematics mapping joint angles to end-effector position f(j) : R
7 → R

3.

Our first constraint is that the robot must follow the canonical path according to

the time-warping funciton

p(φ(t)) = f(j(t)) (A.16)

We also constrain the time-warping function φ to be monotonically positive

from [0, T ] to [0, 1] by constraining its slope to be positive and for φ to have the

right boundary constraints:

φ′(t) > 0 (A.17)

φ(0) = 0 (A.18)

φ(T ) = 1 (A.19)

We define the forward kinematics funciton f by loading the Kinova Gen3

URDF into Drake. Likewise, we model the forward dynamics using drake, so

that, under input joint torques at time tgiven by τ(t) : [0, T ] → R
7 we know

the joint accelerations j′′(t) as a funciton of time. The forward dynamics gives

us a differential equation of j′′(t) as a funciton of j′, j, and τ . Using FD as the

forward dynamics function, we have the constraint

j′′(t) = FD(j′(t), j(t), τ(t)) (A.20)

We additionally add joint speed limits j′imax for each joint i.

−j′imax ≤ j′i(t) ≤ j′imax (A.21)
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We also add torque constraints for each joint i

−τimax ≤ τi(t) ≤ τimax (A.22)

Finally, we add a time-warping constraint, that our time-warping regulariza-

tion value must be less than some bound. We note that we adjust the definition

of our time-warping cost to account for the new domain of the time-warping

of [0, T ] instead of [0, 1]. Our time-warping regularization value now contains

additional factors of T and 1
T

so that it is not affected by linear scaling of the real

time duration T .

1

T

∫ T

0

(Tφ′(t)− 1) log(Tφ′(t)) dt (A.23)

and we constrain this to be below some value Cwarp

1

T

∫ T

0

(Tφ′(t)− 1) log(Tφ′(t)) dt ≤ Cwarp (A.24)

Our optimization objective is to minimize T (how long it takes the robot to

perform the motion) subject to all the constraints above.

A.11.2 Optimization Using Direct Collocation

To numerically solve the optimization problem, we use the direct collocation

appraoch of [34] implemented in Drake. Rather than requiring that all the con-

straints above be satisfies at all timesteps, we only check constraints at fixed,

equally-spaced timesteps. In particular, we approximate j(t),j′(t),and φ(t) as

cubic splines (with K segments) and K + 1 equally spaced knots (including the

knots at the endpoints at 0 and T ), and we constrain the derivative of the cubic
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spline j(t) to equal the cubic spline j′(t) at the knot and at the collocation points

(which are the midpoints in between two knots). We restrict τ(t) and φ′(t) to be

piecewise affine with the same equally-spaced knots, and we now just check the

following constraints at knot points and collocation points:

p(φ(t)) = f(j(t)) (A.25)

−j′imax ≤ j′i(t) ≤ j′imax (A.26)

−τimax ≤ τi(t) ≤ τimax (A.27)

j′′(t) = FD(j′(t), j(t), τ(t)) (A.28)

The following constraints are only checked at knot points:

φ′(t) > 0 (A.29)

And, of course, the following constraints are still just at the boundary points:

φ(0) = 0 (A.30)

φ(T ) = 1 (A.31)

The warping cost constraint is now approximated by a trapizoidal integra-

tion over the K + 1 knot points tk ∈ {0, . . . , T}:

∑

tk

wk (Tφ
′(tk)− 1) log(Tφ′(tk)) ≤ Cwarp (A.32)

where the weighting wk is 1
2K

if tk is 0 or T (a boundary) and 1
K

otherwise.

We then optimize using IPOPT [95], terminatng after 2000 max iterations.

We use K = 20 cubic spline segments. For NoWarping, we set the max time-

warping cost Cwarp to zero, and when we allow warping, we set the max time-

warping allowed to 0.05. Based on the Kortex Gen3 User Guide, we set the joint
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speed limits to 1.39 rad/s for the first four joints and 1.22 rad/s for the last three

joints. Likewise, we set the joint torque limits to 32 Nm for the first four joints

and 13 Nm for the last three joints.

A.11.3 TimewarpVAE Robot Control

For robot execution, we send low-level joint commands at 500Hz to the Kinova

Gen3 arm, using a PID controller to follow the desired joint position and ve-

locities. The low-level commands directly specify the current desired for each

joint, since we found there to be an unusably high delay when commanding via

the TORQUE HIGH VELOCITY low-level API provided by Kinova, leading to

controller instability. The TORQUE low-level API is implemented by Kinova

leads to stable control, but contains a cascading controller that includes a veloc-

ity control loop, and therefore does not match the expected relationship between

commanded torque and joint accellerations (in particular, commanding a robot

joint to move with maximal torque accelerates the joint much more slowly than

it would without Kinova’s cascading controller). For these reasons, we use the

MOTOR CURRENT low-level API in a PID loop to command the Kinova Gen3

arm to track the joint trajectory returned from our optimization calculation.
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Figure A.6: Latent sweeps of trajectories. Latents 1 and 2 primarily affect the
starting position. Latent 3 primarily affects how the trajectory bends.

A.11.4 Fork Additional Experimental Model’s Learned Latent

Dimensions

The model trained for the yarn acquisition experiments happened to have a

slightly different architecture and hyperparameters. However, we can still

associate meaning to the different latent directions, showing robustness to

our approach. Here, the first two latent directions primarily affect the two-

dimensional coordinates of the starting position of the fork in the X-Y plane. The

third latent direction primarily affects the curvature of the trajectory, whether it

angles to the left or the right before scraping the yarn to the pickup location on

the plate. A sweep through these three different values is shown from above

and from an angle in Fig. A.6. The choice of which latent value affects which
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component of the trajectory is arbitrarily learned by the model (there is pertur-

bation symmetry in the training setup). This learned model can be viewed as a

rotation of the latent space of the previously learned model, where the first two

latents affect the starting position in different directions than before.

A.12 JL1-VAE Neural Network Architecture

We use a convolutional neural network architecture for our models. Our code

can be found in our open source repository.1

For the autoencoders used on 64×64-pixel images, we mimic the architecture

presented in [55]. A 4×4 kernel was used for all convolutional layers, with a

stride of 2. A ReLU was used between all layers, with a final sigmoidal layer

on the reconstruction architecture and a Bernoulli loss. In Tables A.2 and A.3,

“Conv2d” refers to a convolutional layer, “FC” refers to a fully connected layer,

“ConvT2d” refers to convolutional transpose, and the “(× 2)” in the embedding

architecture refers to the separate mean and log variance heads on the shared

architecture.

For the autoencoders used on 16×16-pixel images (the natural image crops),

3×3 kernels were used for all convolutional layers and a stride of 2 everywhere

except for the last reconstruction layer, which has a stride of 1. ReLU was used

between all layers, with a final sigmoidal layer on the reconstruction architec-

ture and a Bernoulli loss.

1https://github.com/travers-rhodes/jlonevae
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Table A.2: Embedding and reconstruction architectures for 64×64-pixel images

Embedding Reconstruction

Input: 64×64, 1 or 3 channels Input: 10 values
Conv2d: 32 channels FC: 256 channels
Conv2d: 32 channels FC: 4×4 image, 64 channels
Conv2d: 64 channels ConvT2d: 64 channels
Conv2d: 64 channels ConvT2d: 32 channels
FC: 256 channels ConvT2d: 32 channels
FC (× 2): 10 values ConvT2d: 64×64, 1 or 3 chan-

nels

Table A.3: Embedding and reconstruction architectures for 16×16-pixel images

Embedding Reconstruction

Input: 16×16, 1 channel Input: 10 values
Conv2d: 64 channels FC: 128 channels
Conv2d: 128 channels FC: 4×4 image, 64 channels
FC: 128 channels ConvT2d: 64 channels
FC (× 2): 10 values ConvT2d: 32 channels

ConvT2d: stride 1, 64×64, 1
channel

To estimate the loss, our experiments estimate the full Jacobian matrix Jg(z)

using the finite difference method along each latent dimension. That is, for any

given latent value z at which we wish to compute the Jacobian matrix, generate

a set of k data points zi = z+εei, where ε is a small fixed value and ei a unit vector

in the ith latent direction. Then, run the forward model on the batch of zi to gen-

erate g(zi) and estimate the ith column of the Jacobian matrix as (g(zi)− g(z))/ε

This Jacobian matrix estimate is itself backward differentiable using standard

backward differentiation, and can be directly used in our JL1-VAE loss.
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A.13 JL1-VAE Three-dots Experiment Hyperparameters and

Additional Results

For the three-dots dataset, we discretize the possible x,y coordinates of the cen-

ter of each dot to 64 different values. The generative map is not injective, as

the dots are identical, so the same resulting image can be formed from multiple

permutations of ground-truth factor values. There are 646 ∼ 68.7 billion differ-

ent possible input latent combinations, from which we pre-generate a cache of

500,000 images for training. During evaluation, new images are generated at

runtime based on the desired ground-truth factors of variation.

The beta-VAE was trained with β = 4 on a training dataset cache of 500,000

64×64-pixel images of three black dots on a white background, with x and y val-

ues for the dot centers appearing independently at one of 64 possible discrete

locations, evenly spaced horizontally and vertically, across the image. A latent

space of 10 dimensions was used. 300,000 independently sampled batches of

64 images from the cache were used, giving a total of 19,200,000 image presen-

tations to the neural network. Additionally, the JL1-VAE was trained with the

same β and model architecture on the same training dataset with our added

L1 regularization weighted by a hyperparameter γ = 0.1. The hyperparameter

γ was chosen as the largest tested for which the learning algorithm converged

to give good reconstruction accuracy. Linear annealing was used for both the

β and γ parameters, annealing each from 0 to their final values over the first

100,000 batches. The Adam optimizer with a learning rate of 0.0001 was used

For the baseline comparison models, we use the implementations of β-VAE,
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FactorVAE, DIP-VAE-I, DIP-VAE-II, β-TCVAE, and AnnealedVAE from [55],

matching their hyperparameter choices. For implementations that for which

they provided a range of tested hyperparameters, we chose near the middle

of their range. Thus, for β-VAE we used β = 4; for Annealed VAE we use

cmax = 25, iteration threshold= 100000, and γ = 1000; for Factor VAE we use

γ = 30; for DIP-VAE-I we use λod = 5 and λd = 50; for DIP-VAE-II we use

λod = 5 and λd = 5; and for β-TCVAE we use β = 4.

The reference implementation provided with that work was modified in or-

der to have consistent 4×4 kernels shown in the architecture in Table A.2. We

include the modified implementation in our supplemental materials. The ref-

erence implementation of that architecture had unexplained 2×2 convolutional

kernels for two layers.

We varied the random model initialization seed ten times and trained ten

different models for each algorithm type. Additionally, we ran a smaller exper-

iment randomizing both the model initialization seed and using different initial

seeds for data sampling as well, getting similar results to those presented in the

paper. The baseline implementation samples batches by epoch, shuffling after

each epoch, while our implementation pulls independent random batches at

each training set. Thus, the results for β-VAE in Figure 4.5 use independently-

sampled random batches, while the results for β-VAE in 4.6 use shuffling after

each epoch. This did not seem to affect results.

For the local metric calculations, we use the implementation provided

by [55]. We sample 20 different local regions, pulling 10,000 points for each. We

use a histogram discretization with 5 bins for mutual information calculations.
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(a) Jacobian matrix columns for β-VAE (b) Jacobian matrix columns for JL1-VAE

Figure A.7: Qualitative results for three-dots. Both models used β = 4.0. For
JL1-VAE, γ = 0.1. All Jacobian matrix columns are shown.

All ten Jacobian columns associated with Figure 4.3 are shown in Figure A.7.

Additionally, we validate that an L2 loss does not have the same disentan-

gling properties as our L1 loss by replacing the L1 loss with an L2 loss and com-

puting the local disentanglement metrics in Figure A.8. We label the JL1-VAE

with L1 replaced by L2 a JL2-VAE. All the L2 regularizations are roughly indis-

tinguishable from the β-VAE result, while the JL1-VAE consistently outperforms

for the full range of tested regularization values γ.

(a) Local MIG scores (b) Local modularity scores

Figure A.8: Local disentanglement scores varying the locality parameter ρ and
the regularization factor γ for JL1-VAE, JL2-VAE, and β-VAE. The regularization
factor γ is given in parentheses in the legend. Ten of each type of model were
trained on the three-dots dataset with β = 4. This figure best viewed in color.
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A.14 JL1-VAE Natural Image Experiment Hyperparameters

and Additional Results

The beta-VAE was trained with β = 0.01 on a dataset 100,000 16x16-pixel crops

from grayscale natural scenes [68], embedding the dataset into a latent space of

10 variables. We train for 100,000 batches of 128 images, re-shuffling the images

after each epoch. Due to epoch endings, a few of the batches were incomplete,

with fewer than 128 images. We train the JL1-VAE with the same model archi-

tecture and β on the same training dataset with our added L1 regularization

cost weighted by a hyperparameter γ = 0.01. The β was chosen as large as pos-

sible that still avoided significant dimensionality collapse, and then the hyper-

parameter γ was chosen as the largest tested for which the learning algorithm

converged to give good reconstruction accuracy. Linear annealing was used for

both the β and γ parameters, annealing each from 0 to their final values over

the first 50,000 batches. The Adam optimizer was used with a learning rate of

0.001.

We show additional Jacobian column results, training on five latent dimen-

sions in Figure A.9, and training on 25 latent dimensions in Figure A.10. Fig-

ure A.11 shows the top 100 PCA components and 100 trained ICA components.
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(a) Jacobian columns for a β-VAE with 5 latent dimensions

(b) Jacobian columns for a JL1-VAE with 5 latent dimensions

Figure A.9: Results for β-VAE and JL1-VAE using 5 latent dimensions (instead
of the 10 shown in the main paper). Both are trained with β = 0.01, and JL1-VAE
trained with γ = 0.01.

A.15 JL1-VAE MPI3D-Multi Experiment Hyperparameters

The beta-VAE was trained with β = 0.01 on a 2×2 tiling of every-other-pixel

downsampling of randomly sampled images pulled from MPI3D-real, resulting

in 64×64-pixel training images. We only sample MPI3D-real images of a top-

down view of the robot holding a large, blue cube, with salmon background

lighting. In this way, our dataset does not vary along unordered/sparse latent

factors like color/shape. This leaves two independent dimensions of variance

(horizontal and vertical axis joints) for each of the 4 tiled robot images. If we

were to apply our local disentanglement metrics to discrete factors of variation

that do not come with a natural distance metric such as “shape” or “color,” we

would require equality in order for values to be considered “close.” That is, for

any such factor of variation, a “local” sampled dataset will be constant on that

factor.

The dataset was embedded into a latent space of 10 dimensions. 300,000 in-

dependently sampled batches of 64 images were taken from the cache, giving a

total of 19,200,000 image presentations to the neural network. The β was chosen

to give good reconsruction accuracy. Additionally, we train our JL1-VAE with

120



(a) Jacobian columns for a β-VAE with 25 latent dimensions

(b) Jacobian columns for a JL1-VAE with 25 latent dimensions

Figure A.10: Results for β-VAE and JL1-VAE using 25 latent dimensions (instead
of the 10 shown in the main paper). Both are trained with β = 0.01, and JL1-VAE
trained with γ = 0.01.

the same β and model architecture on the same training dataset with our added

L1 regularization weighted by a hyperparameter γ = 0.01. The hyperparameter

γ was chosen as the largest tested for which the learning algorithm converged

to give good reconstruction accuracy. Linear annealing was used for both the

β and γ parameters, annealing each from 0 to their final values over the first

100,000 batches. The Adam optimizer was used with a learning rate of 0.0001.
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(a) 100 latent PCA directions with the largest explained variance [70]

(b) 100 latent ICA directions fit using FastICA[70, 40]

Figure A.11: Latent vectors for PCA and ICA trained on random 16x16 crops
from natural images collected by [68]
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Gelly, Bernhard Schölkopf, and Olivier Bachem. Challenging common as-
sumptions in the unsupervised learning of disentangled representations.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 4114–4124. PMLR, 2019.

[56] Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf,
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ber 3-8, 2018, Montréal, Canada, pages 10815–10824, 2018.

[101] Feng Zhou and Fernando De la Torre. Generalized time warping for
multi-modal alignment of human motion. In 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2012, Providence, RI, USA, June
16-21, 2012, pages 1282–1289. IEEE Computer Society, 2012.

[102] Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia,
Jialin Wu, Paul Wohlhart, Stefan Welker, Ayzaan Wahid, Quan Vuong,
Vincent Vanhoucke, Huong T. Tran, Radu Soricut, Anikait Singh, Jaspiar
Singh, Pierre Sermanet, Pannag R. Sanketi, Grecia Salazar, Michael S.
Ryoo, Krista Reymann, Kanishka Rao, Karl Pertsch, Igor Mordatch,
Henryk Michalewski, Yao Lu, Sergey Levine, Lisa Lee, Tsang-Wei Ed-
ward Lee, Isabel Leal, Yuheng Kuang, Dmitry Kalashnikov, Ryan Julian,
Nikhil J. Joshi, Alex Irpan, Brian Ichter, Jasmine Hsu, Alexander Her-
zog, Karol Hausman, Keerthana Gopalakrishnan, Chuyuan Fu, Pete Flo-
rence, Chelsea Finn, Kumar Avinava Dubey, Danny Driess, Tianli Ding,
Krzysztof Marcin Choromanski, Xi Chen, Yevgen Chebotar, Justice Car-
bajal, Noah Brown, Anthony Brohan, Montserrat Gonzalez Arenas, and
Kehang Han. RT-2: Vision-language-action models transfer web knowl-
edge to robotic control. In Jie Tan, Marc Toussaint, and Kourosh Darvish,
editors, Proceedings of the 7th Conference on Robot Learning, CoRL 2023, 6-9
November 2023, Atlanta, GA, USA, volume 229 of Proceedings of Machine
Learning Research, pages 2165–2183. PMLR, 2023.

[103] Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal compo-
nent analysis. Journal of Computational and Graphical Statistics, 15(2):265–
286, June 2006.

136



 

 

ProQuest Number:  
 
 

INFORMATION TO ALL USERS 
The quality and completeness of this reproduction is dependent on the quality  

and completeness of the copy made available to ProQuest. 
 
 

  
 
 
 

Distributed by  
ProQuest LLC a part of Clarivate (         ). 

Copyright of the Dissertation is held by the Author unless otherwise noted. 
 
 

This work is protected against unauthorized copying under Title 17,  
United States Code and other applicable copyright laws. 

 
 

This work may be used in accordance with the terms of the Creative Commons license  
or other rights statement, as indicated in the copyright statement or in the metadata  

associated with this work. Unless otherwise specified in the copyright statement  
or the metadata, all rights are reserved by the copyright holder. 

 
 

ProQuest LLC 
789 East Eisenhower Parkway 

Ann Arbor, MI 48108 USA 

31332636

2024


