
Learning from Demonstration using a Curvature Regularized
Variational Auto-Encoder (CurvVAE)

Travers Rhodes, Tapomayukh Bhattacharjee, and Daniel D. Lee

Abstract— Learning intricate manipulation skills from hu-
man demonstrations requires good sample efficiency. We in-
troduce a novel learning algorithm, the Curvature-regularized
Variational Auto-Encoder (CurvVAE), to achieve this goal. The
CurvVAE is able to model the natural variations in human-
demonstrated trajectory data without overfitting. It does so by
regularizing the curvature of the learned manifold. To showcase
our algorithm, our robot learns an interpretable model of the
variation in how humans acquire soft, slippery banana slices
with a fork. We evaluate our learned trajectories on a physical
robot system, resulting in banana slice acquisition performance
better than current state-of-the-art.

I. INTRODUCTION

Learning new skills is challenging for robots. In cases
where humans know how to perform a skill, learning from
demonstration is a common approach. In learning from
demonstration, a human demonstrates some skill one or more
times and the robot learns from those human demonstrations.
Learning from demonstration can speed up robot learning
because the robot can take advantage of human expertise.

One of the challenges of learning from demonstration,
however, is the difficulty in collecting expert data. Human
demonstrations take time to collect, and therefore learning
from demonstration usually has a small number of examples,
compared to the tens of thousands of examples present
in standard machine learning datasets. For intricate manip-
ulation skills, the learning from demonstration algorithm
must be able to learn a complicated model of the skill
with many parameters. In order to be sample efficient, the
algorithm must include some form of inductive bias or model
regularization.

There are many forms of model regularization. In this
work, we study a regularization scheme based on curvature.
Functions that overfit the data will tend to have higher
curvature, so we penalize the curvature of the learned model
in our regularization term. We present a novel learning al-
gorithm, the Curvature-regularized Variational Auto-Encoder
(CurvVAE), which combines the modeling capabilities of
a Variational Auto-Encoder (VAE) [1] with a curvature
regularization term to prevent overfitting to small datasets.

To showcase learning from demonstration using a Curv-
VAE, we choose an example which requires intricate manip-
ulations and is hard to simulate. The domain we choose is
the acquisition of soft and slippery food items using a fork.
In particular, our robot learns to pick up banana slices with
a fork, as shown in Fig. 1. This problem requires intricate

1 All authors are with Cornell University, USA
{tsr42,tb557,ddl46}@cornelledu

Intuitive
Parameters

Trained
CurvVAE Model

Executable
Trajectory

...
...Latent 1

Latent 2Latent 3

Fig. 1. Execution of a parameterized trajectory from a Curvature-
regularized Variational Auto-Encoder (CurvVAE)

manipulations, since simple stabbing motions will often lead
to the food slipping off the fork prongs. It is hard to simulate
this problem because we lack good models of the deformable
nature of banana slices and of the relevant frictional forces.
Since humans can demonstrate how to acquire banana slices
with a fork, this problem is a good candidate for learning
from demonstration, as visualized in Fig. 2. However, since
learning from demonstration on this problem requires real
human examples, the training dataset is relatively small. Our
CurvVAE algorithm is able to learn a good model of human
trajectories in an interpretable way without overfitting.

The contributions of this paper are:
• our novel CurvVAE algorithm to learn intricate manip-

ulation skills from demonstrations, including the use of
a curvature regularization term to prevent overfitting to
small datasets, and

• the application of this algorithm to the manipulation of
soft, spearable, slippery food (i.e. banana slices), includ-
ing evaluation on a physical robotic system resulting in
performance better than current state-of-the-art [2].



Acquire Human
Demonstrations

Pre-process
Human

Trajectories
Train CurvVAE

Select from
Interpretable
Latent Space

Execute
Trajectory
on Robot

Fig. 2. Component diagram of how a CurvVAE model is used for learning from demonstration. A sample of human demonstrations is collected. The
dataset is truncated and time-warped to provide an aligned dataset of human demonstrations. We train a CurvVAE to model the variations in how humans
perform the skill, generating an interpretable, learned parameterization of the skill. The user selects their desired parameters from the interpretable latent
set, and the CurvVAE can then generate a trajectory that is executed on the physical robotic arm.

II. RELATED WORK

A. Trajectory Representation

In the robotics context, trajectories are often represented
by key points of splines [3], [4], [5] or by parameters of
Dynamic Movement Primitives (DMPs) [5], [6], [7], [8].
While it is easy to time-warp and change the goal position of
DMPs, the full set of parameters in both DMPs and splines is
generally too large to be conveniently modified by hand for
trajectories of robots with multiple joints. By contrast, our
work learns an intuitive, very low-dimensional representation
of trajectories with human interpretabilty in mind.

Our architecture is flexible. We could have used the param-
eters of splines or DMPs as the input to our CurvVAE. Such
an approach would be similar to [6], which uses the DMP
parameters as the input to Principal Components Analysis
(PCA) to learn the natural variation of the data. CurvVAE
discourages curvature but does not force exact linearity like
PCA does, so our model is more flexible and makes fewer
linearity assumptions than the approach presented in [6].

Some authors have trained task-specific representations,
which are functions from task variables, like the height
of a known obstacle or the location of a dartboard target,
to DMP parameters [6], [8]. However, this type of task-
parameterized DMP is a supervised problem where the
desired representation, namely the task variable, is known
a priori. Our work is based on the unsupervised learning of
the representation of trajectories.

B. Curvature Regularization

Considering models with regularization terms related to
curvature, we note important differences between our work
and previous work. [9] regularize the Hessian (multivariate
second derivative) and equate that regularization with the
regularization of a function’s “curvature profile.” However,
the extrinsic curvature of a manifold and the Hessian are
not equivalent. Scaling the input space can significantly
reduce the Hessian without affecting the extrinsic curvature
of the output manifold. We want our curvature regularization
term to penalize curvature of the learned manifold, not to
encourage a particular scaling of the latent space. The authors
are not aware of previous work which penalizes the extrinsic
curvature of the learned manifold of a VAE.

III. CURVATURE REGULARIZED VAE

A. Variational Auto-Encoder (VAE)

We use machine learning to model the human demonstra-
tions. We want to model the full range of natural variation in

the demonstrations, not just the average demonstration, so we
use an unsupervised modeling approach that can identify the
main factors of natural variation in the data. A Variational
Auto-Encoder (VAE) is an unsupervised machine learning
approach that models the main factors of variation of the
data [1]. The VAE includes an embedding function that takes
in a datapoint and returns an associated lower-dimensional
latent representation, corresponding to the main factors of
variation of the data while removing noise. The VAE also
includes a data generation function that takes in a latent value
and generates an associated synthetic datapoint. The VAE is
trained so that the data generation function creates synthetic
data that looks like the training dataset and maintains the
main factors of variation in the data. The VAE averages out
noise in the data by using a cost that tries to make sure
nearby points in the latent space generate similar synthetic
data points.

Specifically, the VAE training loss contains a noisy recon-
struction loss, which is computed by embedding a training
point into the latent space, perturbing that latent embedding
according to a noise distribution, reconstructing back from
the latent space into the data space, and then computing
the error between the reconstructed data point and original
training point. The reconstruction loss encourages the VAE
to act like an auto-encoder and learn an invertible encoding.

The VAE training loss also includes a KL-divergence loss
on the noisy embedding distributions which encourages the
embedding values to stay near the origin and discourages the
embedding noise from collapsing to the zero noise, perfect
auto-encoder limit. The β-VAE multiplies the KL-divergence
term by a tunable hyperparameter β to trade off the KL-
divergence objective with reconstruction accuracy [10]. The
full β-VAE training loss is defined as the sum over the losses
for each training data point x, where the loss for a single
datapoint x, assuming a Gaussian noise model, is

‖x− g(f(x) + ε)‖2 + β
‖f(x)‖2 +

∑
d(σ

2
d(x) + log(σ2

d(x))

2

where g is the generator function, f is the embedding
function, σ2

d(x) is the variance of our embedding noise in
the dth dimension, and ε is sampled from an axis-aligned,
multivariate normal distribution with variance in each dimen-
sion defined by σ2

d(x). f , g, and σ2 are all trainable neural
networks.

The negative of this loss plus a constant is called the
Evidence Lower Bound (ELBO), since it is a lower bound
on log(p(x)) = log(

∫
z
p(x|z)p(z)dz), which is the log-

likelihood of the data point given our model, marginalized



g

Latent Space Output Space

R

Fig. 3. After mapping a random point and line through g, we compute
the radius R of the best-fit tangent circle to the resulting curve. Our
regularization cost is 1

R2 .

over all the possible latent values for that datapoint. Thus,
maximizing the ELBO (minimizing our cost) is a proxy for
maximum likelihood estimation.

B. Curvature-regularized VAE

VAEs and other neural-network-based machine learn-
ing algorithms generally require large datasets. In cases
of limited data, models can benefit from regularization.
Model regularization helps prevent overfitting the data, at
the cost of adding inductive bias. However, inductive bias
can have benefits, including making the generative model
more human-understandable and disentangling latent factors
of variation [11]. In this work we explore using curvature
regularization to improve the sample efficiency of VAEs.

To regularize our model, we penalize the extrinsic cur-
vature of the manifold learned by the generative function.
Explicitly, we penalize the square of the reciprocal of the
radius of curvature of curves in the learned manifold. The
curves are selected by taking random lines through a point
in the latent space and mapping them through the function
g onto the curved output manifold embedded in the data
space, as shown in Fig. 3. We average the associated extrinsic
curvatures for different randomly sampled points and lines
to get our curvature estimate of the overall manifold. Regu-
larizing the curvature reduces the complexity of the learned
model and encourages simpler functions. Additionally, this
regularization term encourages interpretable latent variables
in the model, since it explicitly causes the model to seek out
a generator function for which linear changes to the latent
space lead to closer-to-linear changes in the output.

For a generator function as g, we use finite differences to
estimate the curvature penalty as: g(z+h)−g(z)

‖g(z+h)−g(z)‖+ε −
g(z)−g(z−h)

‖g(z)−g(z−h)‖+ε

‖g(z + h)− g(z)‖+ ε

2

where z is randomly sampled from the latent space, h is
randomly sampled from a spherical shell with small radius,
and ε is a small constant (ε =1e-10) to avoid divide-by-
zero errors. Since h is randomly sampled from a spherical
shell, replacing h with −h in the definition above leads to
an equivalent estimate of curvature. This cost is scaled by a
hyperparameter γ. We call the β-VAE architecture with this
curvature regularization a Curvature-regularized Variational

Auto-Encoder (CurvVAE). The full CurvVAE training loss
is thus the sum over each training data point x of:

‖x− g(z)‖2 + β
‖f(x)‖2 +

∑
d(σ

2
d(x) + log(σ2

d(x))

2

+γ

 g(z+h)−g(z)
‖g(z+h)−g(z)‖+ε −

g(z)−g(z−h)
‖g(z)−g(z−h)‖+ε

‖g(z + h)− g(z)‖+ ε

2

where z = f(x)+ε, h is randomly sampled from a spherical
shell with small radius, g is the generator function, f is the
embedding function, σ2

d(x) is the variance of our embedding
noise in the dth dimension, ε is sampled from an axis-
aligned, multivariate normal distribution with variance in
each dimension defined by σ2

d(x), and ε is a small constant
to avoid divide-by-zero errors.

C. CurvVAE Example on Fork Poses

To visualize the effect of the curvature regularization term
in the CurvVAE loss, we consider a sample dataset of fork
poses. These poses are the combined 9,920 poses in the fork
trajectories we describe in Section IV-A. We represent each
fork pose using three spatial dimensions and four quaternion
dimensions. Each fork pose is expressed as a vector of
dimension 7, and we expect that the sampled fork poses
can be well approximated by a lower-dimensional manifold
reflecting the largest factors of variation in the pose dataset.

We then take a very small training dataset of two hundred
randomly sampled poses and use the rest of the dataset as
the test set. We train 13 different β values for β-VAE and
16 different γ values for CurvVAE (holding β at 1e-5). For
each hyperparameter set, we train 10 different models at 3
different learning rates, for a total of 390 different β-VAE
models and 480 different CurvVAE models. Our models all
use 3 latent dimensions.

After training each model, we plot the reconstruction root
mean squared error on the training set and on the test set.
These results are shown in Fig. 4, along with the results for
PCA models on zero through three dimensions. We note that
no value of β for the β-VAE can achieve as low test error
as the optimal CurvVAE. We additionally note that though
CurvVAE regularizes to encourage a more linear model, it
does not require a linear model, so our CurvVAE is also able
to achieve a lower test error than PCA.

IV. MACHINE LEARNING METHODS

Since CurvVAE allows us to train a VAE on a relatively
small dataset, we can use a CurvVAE for robotic learning
from demonstration in cases where human demonstration
data is limited. As an example, we learn a generative model
of human fork trajectories acquiring food. We then show that
the learned motions have interpretable latent spaces and lead
to effective trajectories when run on a physical robot arm.

A. Human-demonstrated Trajectories and Data Processing

We use recordings of human participants picking up ba-
nana slices with a fork as our training demonstrations [12].
That fork trajectory dataset contains detailed fork poses (both



Inc
rea

sin
g β

Increasing γ

Fig. 4. β-VAE is not able to attain as low test error as our CurvVAE
model. Our CurvVAE also outperforms PCA.

positions and orientations) for real food acquisition and de-
livery trajectories in a pretend assistive feeding environment.
In the recordings, participants move a fork to a plate, pick
up a banana slice with the fork, and then pretend to feed it
to a mannequin.

For this work, we just want to model the part of the
trajectory where the user is picking up the food, so we extract
the individual banana slice acquisition components from the
longer demonstration trajectories. However, since we want to
learn a continuous model of the trajectory styles, we remove
trajectories which are categorically different from others,
including those with outlier fork orientations. For the same
reason, we remove trajectory sequences from what appears
to be a left-handed participant and we remove trajectory
sequences where the force-torque sensor on the fork does
not detect food impact. We truncate trajectories to start at
most one centimeter above food impact and to end at most
four centimeters above the plate, since we are just interested
in modeling the manipulation strategy used to pick up the
food and bring it to a stable fork position. After data pre-
processing, the dataset has 155 banana acquisition examples.

We linearly scale the timing of each sequence so that each
trajectory sequence starts at time zero and lasts one arbitrary
time unit. Additionally, we translate each trajectory so that
the maximal force recording from the trajectory occurs at
the X/Y origin and the lowest height recorded during the
trajectory occurs at Z=0. These two steps align trajectories,
and we can translate or time-warp trajectories during replay.
We mean-center the poses and then multiply all the positions
by a scaling factor of 5.6 (computed to make the largest
variance in the X, Y, or Z direction across the whole dataset
equal to one) and multiply all the quaternion orientations
by 0.90 (computed so that rotations around the fork tip
that move the handle one centimeter are penalized roughly

the same amount as translations which move the fork tip
one centimeter). When the model is applied and poses are
generated for the robot to execute, these centering and scaling
transformations are inverted.

B. Neural Network Architecture for Trajectories

Our trajectory generator function g takes as input a three-
dimensional latent value and an additional time parameter.
It outputs a pose for that trajectory at that associated time.
The pose output by the model is represented as a vector
of length seven (three position values and four quaternion
values). The generator is a neural network with a single
hidden layer of a thousand nodes and uses rectified linear
units as its nonlinearities. A shallow but wide architecture
is a simple architecture for learning continuous functions.
By sweeping the time parameter between zero and one, a
full pose trajectory for the fork can be generated from this
architecture.

The embedding function f has a shared hidden layer with
a thousand nodes and two linear heads attached, one to
predict the mean embedding z, and one to predict the log
variance of the embedding ln(σ2), again using rectified linear
units for nonlinearities. We follow the standard assumption
of axis-aligned Gaussian embeddings, so that for a three-
dimensional embedding latent space, z and ln(σ2) are both
three-dimensional vectors.

Since our data points are trajectories, we have a bit of
additional infrastructure in our training architecture. To train
our reconstruction loss, we randomly pull two poses and their
associated timestamps (xa, ta) and (xb, tb) from a single
training trajectory. xa and xb are seven-dimensional (posi-
tion and quaternion) vectors; ta and tb are their respective
scalar timestamps. We embed (xa, ta) using our embedding
function f to get a three-dimensional latent embedding za
and a log-variance estimate ln(σ2

a). We add Gaussian noise
to the mean estimate following the distribution defined by
σ2
a = exp(ln(σ2

a)) to get the noisy embedding z̃a. This noisy
embedding should be an approximate latent representation
of the entire trajectory associated with (xa, ta), from which
(xb, tb) was also drawn. We now pair this embedding with
timestamp tb, and use the generator function g to compute
a reconstructed pose for (z̃a, tb) with the intent that it be
a good estimate of xb. The squared error between g(z̃a, tb)
and xb is our reconstruction loss.

Even though our generator function g is now additionally
parameterized by time, we only apply the curvature loss
calculations to perturbations of the latent value, keeping
the randomly-sampled time parameter constant within each
curvature loss calculation. That is, we do not penalize the
curvature of the individual trajectories over time, we only
penalize how trajectories change as we vary the latent value.

C. Training Hyperparameters

We trained a CurvVAE model using the above model ar-
chitecture on training data of forks picking up banana slices.
We chose hyperparameters based on the tradeoff between la-
tent space interpretability and reconstruction accuracy. Lower



Latent 1

Latent 2

Latent 3

Fig. 5. Fork starting poses for the CurvVAE trajectory. Each latent direction
rotates the fork along a different axis.

β ensures good reconstruction accuracy, but too small a β
winds up embedding the latent points very far from each
other in the latent space. For our training dataset, β = 0.001
was a good compromise between these goals. Increasing
γ leads to latent traversals that are closer to linear in the
output space, at the cost of lower reconstruction accuracy.
For our training dataset, γ = 0.001 led to interpretable
models that still had good reconstruction accuracy. We train
for 3,000 batches of 256 pairs of poses randomly sampled
from trajectories.

D. Model Interpretability

The CurvVAE learns an intuitive latent space of tra-
jectories. Changing the latent value leads to interpretable
changes to the starting pose of the fork, corresponding to
rotations of the fork around different axes. Fig. 5 shows the
change in fork starting pose as we vary the three-dimensional
latent value along different dimensions. The first latent value
corresponds to rotation of the starting pose of the fork around
the vertical axis. The second latent value corresponds to
tipping the handle away/toward the viewer. The third latent
value corresponds to tipping the handle to the left/right.

V. PHYSICAL ROBOT EXPERIMENTS

A. The Robot Arm

Experiments are performed on a 7-DOF Kinova Gen3
Arm [13] with a two-fingered Robotiq gripper (85mm stroke
width) [14]. A metal fork is held at a calibrated location and
orientation in the gripper. We run a 500Hz control loop on
an Intel Core i7 CPU running a realtime version of Ubuntu
to send effort commands to the arm. The control computer
converts high-level desired joint-position commands to low-
level effort commands to send to the arm using PID control.

B. Trajectory-following Implementation

The target trajectory is encoded as 64 waypoint poses
to be executed in 6.4 seconds. We use a Jacobian-based
controller to estimate the joint changes required to move

the fork-tip held in the robot end-effector from a starting
pose through the desired waypoints. These joint changes
are scaled as necessary to ensure the robot does not move
unreasonably quickly, and together form a set of desired joint
angle waypoints. These desired joint angles are sent to the
control computer alongside a desired time-to-goal for each
value of desired joint angles. The realtime control computer
computes intermediate waypoint joint positions to move each
joint linearly from its current actual angle to arrive at the next
desired angle at the desired time. PID control is then used to
send computed effort commands to the robot arm at 500Hz
to follow the intermediate waypoint joint positions.

C. CurvVAE Latent Value Selection

The latent values of the trained CurvVAE are interpretable,
as seen in Fig. 5, and correspond primarily to different
starting orientations of the fork. We choose latent values that
approach the banana from approximately the same direction
and that ensure that no fork prong is tipped closer to the table
than the other prongs. Under those constraints, we then find
latent values that tilt the fork away from the banana slice
at various angles. In particular, we choose latent values that
tilt the fork so that the prongs start 30◦ (latent values (0,-
1.2,0.1)), 45◦ (latent values (0,-2.3,-1.5)), and 60◦ (latent
values (0,-3.4,-3.1)) off of vertical. These trajectories are
visualized in Fig. 6.

D. Baseline Trajectories

We compare the food acquisition efficiency of these
learned CurvVAE trajectories to baseline trajectories inspired
by [2]. The state-of-the-art trajectory presented in that work
holds the fork handle at a 45◦ angle and moves the fork
along a 45◦ line to skewer the food. The fork prongs are at
a 75◦ angle during motion, so we label this trajectory the
75◦ baseline. We additionally test holding the fork prongs at
a 45◦ angle while moving them at a 45◦ angle to skewer the
banana slice. For both baseline trajectories, after the banana
is skewered, the fork attempts to lift it vertically (without
changing the orientation of the prongs). We choose these as
our baselines because they are easy to code, intuitive, and
include the current state of the art of [2].

We also include a β-VAE model trained on the same
dataset and model architecture (β = 0.001) and a PCA
model, both with the same latent dimension of three. We
again choose latent values for these models that give similar
starting angles to those chosen for the CurvVAE model.

E. Data Collection

We test food acquisition success on banana slices in
a controlled laboratory setting. Bananas are sliced to be
∼1.5cm thick and placed on a marked location on a plate in
a known position relative to the robot base. For each banana
slice, we test multiple strategies. By testing multiple different
strategies on the each slice in a randomized order, we control
for variations in banana slices. We test each strategy 25
different times and count the number of times that the food
was successfully acquired, where success requires staying



3
0
◦

C
ur

vV
A

E
4
5
◦

C
ur

vV
A

E
6
0
◦

C
ur

vV
A

E

Fig. 6. Still images from CurvVAE trajectories. Trajectories were generated
from the same model using different latent values.

on the fork for at least five seconds. Since the type of plate
can affect food acquisition performance, we run the entire
experiment twice, once using a paper plate and once using
a ceramic plate. The ceramic plate has less surface friction,
and therefore makes for a more challenging environment.

VI. RESULTS AND DISCUSSION

The results of the food efficiency acquisition experiments
are presented in Fig. 7. Like [2], we see that soft food
acquisition can be challenging for the hardcoded trajectories
because banana slices are slippery and can slide off the
prongs of the fork during lifting. However, we note that
the trajectories learned from demonstration are consistently
better at picking up banana slices. The difference is not
statistically significant when the experiment is conducted on
a paper plate. However, when the experiment is conducted on
a ceramic plate, which has less friction and allows the banana
to slide more easily, the performance increase is much larger
and is statistically significant (p < 0.05).

While this manipulation task suggests that CurvVAE may
outperform β-VAE, in general this manipulation task is not
sensitive enough to differentiate CurvVAE performance from
the other learning from demonstration strategies.

In this work, we showed how robots can learn an intuitive
latent space from small samples using a CurvVAE. We
applied the CurvVAE to learning from demonstration and
showed that the learned latent space is low-dimensional
enough that it can be meaningfully understood and could
therefore be directly controlled. We further experimentally
validated that the generated trajectories from the CurvVAE
model have a success rate better than hardcoded base-
line trajectories, including the state-of-the-art 75◦ baseline
presented in [2]. In future work, we plan to incorporate
feedback from the user during trajectory execution, and use
the low-dimensional latent space learned by the CurvVAE
for downstream learning. Additionally, we plan to extend this
work to more types of food and more complicated feeding
trajectories.

Paper Plate Ceramic Plate

Su
cc

es
s

R
at

e

Trajectory Angle of Approach

Fig. 7. Banana slice acquisition success rates.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful sug-
gestions. We gratefully acknowledge support from National
Science Foundation IIS grant #2132846.

REFERENCES

[1] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2014.

[2] R. Feng, Y. Kim, G. Lee, E. K. Gordon, M. Schmittle, S. Kumar,
T. Bhattacharjee, and S. S. Srinivasa, “Robot-assisted feeding: Gen-
eralizing skewering strategies across food items on a realistic plate,”
arXiv preprint arXiv:1906.02350, 2019.

[3] H. Miyamoto, F. Gandolfo, H. Gomi, S. Schaal, Y. Koike, R. Osu,
E. Nakano, Y. Wada, and M. Kawato, “Kendama learning robot
based on a dynamic optimization theory,” in Robot and Human
Communication - Proceedings of the IEEE International Workshop,
1995, pp. 327–332.

[4] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,”
in ICML, vol. 97, 1997, pp. 12–20.

[5] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, pp. 682–697, 2008.

[6] T. Matsubara, S. H. Hyon, and J. Morimoto, “Learning parametric
dynamic movement primitives from multiple demonstrations,” Neural
Networks, vol. 24, no. 5, pp. 493–500, 2011.

[7] A. Pervez and D. Lee, “Learning task-parameterized dynamic move-
ment primitives using mixture of GMMs,” Intelligent Service Robotics,
vol. 11, no. 1, pp. 61–78, jan 2018.

[8] B. C. Da Silva, G. Konidaris, and A. G. Barto, “Learning parameter-
ized skills,” in ICML, vol. 2, 2012, pp. 1679–1686.

[9] S. M. Moosavi-Dezfooli, A. Fawzi, J. Uesato, and P. Frossard, “Ro-
bustness via curvature regularization, and vice versa,” in CVPR, vol.
2019-June, 2019, pp. 9070–9078.

[10] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “β-VAE: Learning basic visual con-
cepts with a constrained variational framework,” in ICLR, 2017.

[11] F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf,
and O. Bachem, “Challenging common assumptions in the unsuper-
vised learning of disentangled representations,” in ICML. PMLR,
2019, pp. 4114–4124.

[12] T. Bhattacharjee, H. Song, G. Lee, and S. S. Srinivasa, “A
Dataset of Food Manipulation Strategies,” 2018. [Online]. Available:
https://doi.org/10.7910/DVN/8TTXZ7

[13] Kinova, “Gen3 robots,” 2021. [Online]. Available:
https://www.kinovarobotics.com/product/gen3-robots

[14] Robotiq, “2f-85 gripper,” 2021. [Online]. Available:
https://robotiq.com/products/2f85-140-adaptive-robot-gripper


